Database
BASIC TOPOLOGY
Metric spaces
Topology on the reals
cnfldnm
Next ⟩
cnngp
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnfldnm
Description:
The norm of the field of complex numbers.
(Contributed by
Mario Carneiro
, 4-Oct-2015)
Ref
Expression
Assertion
cnfldnm
⊢
abs
=
norm
⁡
ℂ
fld
Proof
Step
Hyp
Ref
Expression
1
0cn
⊢
0
∈
ℂ
2
eqid
⊢
abs
∘
−
=
abs
∘
−
3
2
cnmetdval
⊢
x
∈
ℂ
∧
0
∈
ℂ
→
x
abs
∘
−
0
=
x
−
0
4
1
3
mpan2
⊢
x
∈
ℂ
→
x
abs
∘
−
0
=
x
−
0
5
subid1
⊢
x
∈
ℂ
→
x
−
0
=
x
6
5
fveq2d
⊢
x
∈
ℂ
→
x
−
0
=
x
7
4
6
eqtrd
⊢
x
∈
ℂ
→
x
abs
∘
−
0
=
x
8
7
mpteq2ia
⊢
x
∈
ℂ
⟼
x
abs
∘
−
0
=
x
∈
ℂ
⟼
x
9
eqid
⊢
norm
⁡
ℂ
fld
=
norm
⁡
ℂ
fld
10
cnfldbas
⊢
ℂ
=
Base
ℂ
fld
11
cnfld0
⊢
0
=
0
ℂ
fld
12
cnfldds
⊢
abs
∘
−
=
dist
⁡
ℂ
fld
13
9
10
11
12
nmfval
⊢
norm
⁡
ℂ
fld
=
x
∈
ℂ
⟼
x
abs
∘
−
0
14
absf
⊢
abs
:
ℂ
⟶
ℝ
15
14
a1i
⊢
⊤
→
abs
:
ℂ
⟶
ℝ
16
15
feqmptd
⊢
⊤
→
abs
=
x
∈
ℂ
⟼
x
17
16
mptru
⊢
abs
=
x
∈
ℂ
⟼
x
18
8
13
17
3eqtr4ri
⊢
abs
=
norm
⁡
ℂ
fld