Database
BASIC TOPOLOGY
Metric spaces
Topology on the reals
cnfldtopn
Next ⟩
cnfldtopon
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnfldtopn
Description:
The topology of the complex numbers.
(Contributed by
Mario Carneiro
, 28-Aug-2015)
Ref
Expression
Hypothesis
cnfldtopn.1
⊢
J
=
TopOpen
⁡
ℂ
fld
Assertion
cnfldtopn
⊢
J
=
MetOpen
⁡
abs
∘
−
Proof
Step
Hyp
Ref
Expression
1
cnfldtopn.1
⊢
J
=
TopOpen
⁡
ℂ
fld
2
cnxmet
⊢
abs
∘
−
∈
∞Met
⁡
ℂ
3
eqid
⊢
MetOpen
⁡
abs
∘
−
=
MetOpen
⁡
abs
∘
−
4
3
mopntopon
⊢
abs
∘
−
∈
∞Met
⁡
ℂ
→
MetOpen
⁡
abs
∘
−
∈
TopOn
⁡
ℂ
5
cnfldbas
⊢
ℂ
=
Base
ℂ
fld
6
cnfldtset
⊢
MetOpen
⁡
abs
∘
−
=
TopSet
⁡
ℂ
fld
7
5
6
topontopn
⊢
MetOpen
⁡
abs
∘
−
∈
TopOn
⁡
ℂ
→
MetOpen
⁡
abs
∘
−
=
TopOpen
⁡
ℂ
fld
8
2
4
7
mp2b
⊢
MetOpen
⁡
abs
∘
−
=
TopOpen
⁡
ℂ
fld
9
1
8
eqtr4i
⊢
J
=
MetOpen
⁡
abs
∘
−