Metamath Proof Explorer


Theorem cnfldtopn

Description: The topology of the complex numbers. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypothesis cnfldtopn.1 J = TopOpen fld
Assertion cnfldtopn J = MetOpen abs

Proof

Step Hyp Ref Expression
1 cnfldtopn.1 J = TopOpen fld
2 cnxmet abs ∞Met
3 eqid MetOpen abs = MetOpen abs
4 3 mopntopon abs ∞Met MetOpen abs TopOn
5 cnfldbas = Base fld
6 cnfldtset MetOpen abs = TopSet fld
7 5 6 topontopn MetOpen abs TopOn MetOpen abs = TopOpen fld
8 2 4 7 mp2b MetOpen abs = TopOpen fld
9 1 8 eqtr4i J = MetOpen abs