Metamath Proof Explorer


Theorem cnfldtps

Description: The complex number field is a topological space. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Assertion cnfldtps fldTopSp

Proof

Step Hyp Ref Expression
1 cnfldms fldMetSp
2 mstps fldMetSpfldTopSp
3 1 2 ax-mp fldTopSp