Metamath Proof Explorer


Theorem cnflduss

Description: The uniform structure of the complex numbers. (Contributed by Thierry Arnoux, 17-Dec-2017) (Revised by Thierry Arnoux, 11-Mar-2018)

Ref Expression
Hypothesis cnflduss.1 U = UnifSt fld
Assertion cnflduss U = metUnif abs

Proof

Step Hyp Ref Expression
1 cnflduss.1 U = UnifSt fld
2 0cn 0
3 2 ne0ii
4 cnxmet abs ∞Met
5 xmetpsmet abs ∞Met abs PsMet
6 4 5 ax-mp abs PsMet
7 metuust abs PsMet metUnif abs UnifOn
8 3 6 7 mp2an metUnif abs UnifOn
9 ustuni metUnif abs UnifOn metUnif abs = ×
10 8 9 ax-mp metUnif abs = ×
11 10 eqcomi × = metUnif abs
12 cnfldbas = Base fld
13 cnfldunif metUnif abs = UnifSet fld
14 12 13 ussid × = metUnif abs metUnif abs = UnifSt fld
15 11 14 ax-mp metUnif abs = UnifSt fld
16 1 15 eqtr4i U = metUnif abs