Metamath Proof Explorer


Theorem cnflf

Description: A function is continuous iff it respects filter limits. (Contributed by Jeff Hankins, 6-Sep-2009) (Revised by Stefan O'Rear, 7-Aug-2015)

Ref Expression
Assertion cnflf JTopOnXKTopOnYFJCnKF:XYfFilXxJfLimfFxKfLimffF

Proof

Step Hyp Ref Expression
1 cncnp JTopOnXKTopOnYFJCnKF:XYxXFJCnPKx
2 simplr JTopOnXKTopOnYF:XYxXF:XY
3 cnpflf JTopOnXKTopOnYxXFJCnPKxF:XYfFilXxJfLimfFxKfLimffF
4 3 ad4ant124 JTopOnXKTopOnYF:XYxXFJCnPKxF:XYfFilXxJfLimfFxKfLimffF
5 2 4 mpbirand JTopOnXKTopOnYF:XYxXFJCnPKxfFilXxJfLimfFxKfLimffF
6 5 ralbidva JTopOnXKTopOnYF:XYxXFJCnPKxxXfFilXxJfLimfFxKfLimffF
7 eqid J=J
8 7 flimelbas xJfLimfxJ
9 toponuni JTopOnXX=J
10 9 ad2antrr JTopOnXKTopOnYF:XYX=J
11 10 eleq2d JTopOnXKTopOnYF:XYxXxJ
12 8 11 imbitrrid JTopOnXKTopOnYF:XYxJfLimfxX
13 12 pm4.71rd JTopOnXKTopOnYF:XYxJfLimfxXxJfLimf
14 13 imbi1d JTopOnXKTopOnYF:XYxJfLimfFxKfLimffFxXxJfLimfFxKfLimffF
15 impexp xXxJfLimfFxKfLimffFxXxJfLimfFxKfLimffF
16 14 15 bitrdi JTopOnXKTopOnYF:XYxJfLimfFxKfLimffFxXxJfLimfFxKfLimffF
17 16 ralbidv2 JTopOnXKTopOnYF:XYxJfLimfFxKfLimffFxXxJfLimfFxKfLimffF
18 17 ralbidv JTopOnXKTopOnYF:XYfFilXxJfLimfFxKfLimffFfFilXxXxJfLimfFxKfLimffF
19 ralcom fFilXxXxJfLimfFxKfLimffFxXfFilXxJfLimfFxKfLimffF
20 18 19 bitrdi JTopOnXKTopOnYF:XYfFilXxJfLimfFxKfLimffFxXfFilXxJfLimfFxKfLimffF
21 6 20 bitr4d JTopOnXKTopOnYF:XYxXFJCnPKxfFilXxJfLimfFxKfLimffF
22 21 pm5.32da JTopOnXKTopOnYF:XYxXFJCnPKxF:XYfFilXxJfLimfFxKfLimffF
23 1 22 bitrd JTopOnXKTopOnYFJCnKF:XYfFilXxJfLimfFxKfLimffF