Description: A function is continuous iff it respects filter limits. (Contributed by Jeff Hankins, 6-Sep-2009) (Revised by Stefan O'Rear, 7-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | cnflf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncnp | |
|
2 | simplr | |
|
3 | cnpflf | |
|
4 | 3 | ad4ant124 | |
5 | 2 4 | mpbirand | |
6 | 5 | ralbidva | |
7 | eqid | |
|
8 | 7 | flimelbas | |
9 | toponuni | |
|
10 | 9 | ad2antrr | |
11 | 10 | eleq2d | |
12 | 8 11 | imbitrrid | |
13 | 12 | pm4.71rd | |
14 | 13 | imbi1d | |
15 | impexp | |
|
16 | 14 15 | bitrdi | |
17 | 16 | ralbidv2 | |
18 | 17 | ralbidv | |
19 | ralcom | |
|
20 | 18 19 | bitrdi | |
21 | 6 20 | bitr4d | |
22 | 21 | pm5.32da | |
23 | 1 22 | bitrd | |