Metamath Proof Explorer


Theorem cnflf2

Description: A function is continuous iff it respects filter limits. (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Assertion cnflf2 J TopOn X K TopOn Y F J Cn K F : X Y f Fil X F J fLim f K fLimf f F

Proof

Step Hyp Ref Expression
1 cnflf J TopOn X K TopOn Y F J Cn K F : X Y f Fil X x J fLim f F x K fLimf f F
2 ffun F : X Y Fun F
3 eqid J = J
4 3 flimelbas x J fLim f x J
5 4 ssriv J fLim f J
6 fdm F : X Y dom F = X
7 6 adantl J TopOn X K TopOn Y F : X Y dom F = X
8 toponuni J TopOn X X = J
9 8 ad2antrr J TopOn X K TopOn Y F : X Y X = J
10 7 9 eqtrd J TopOn X K TopOn Y F : X Y dom F = J
11 5 10 sseqtrrid J TopOn X K TopOn Y F : X Y J fLim f dom F
12 funimass4 Fun F J fLim f dom F F J fLim f K fLimf f F x J fLim f F x K fLimf f F
13 2 11 12 syl2an2 J TopOn X K TopOn Y F : X Y F J fLim f K fLimf f F x J fLim f F x K fLimf f F
14 13 ralbidv J TopOn X K TopOn Y F : X Y f Fil X F J fLim f K fLimf f F f Fil X x J fLim f F x K fLimf f F
15 14 pm5.32da J TopOn X K TopOn Y F : X Y f Fil X F J fLim f K fLimf f F F : X Y f Fil X x J fLim f F x K fLimf f F
16 1 15 bitr4d J TopOn X K TopOn Y F J Cn K F : X Y f Fil X F J fLim f K fLimf f F