Step |
Hyp |
Ref |
Expression |
1 |
|
cntop1 |
|
2 |
1
|
3ad2ant3 |
|
3 |
|
simpl1 |
|
4 |
|
simpl3 |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
5 6
|
cnf |
|
8 |
4 7
|
syl |
|
9 |
|
simprll |
|
10 |
8 9
|
ffvelrnd |
|
11 |
|
simprlr |
|
12 |
8 11
|
ffvelrnd |
|
13 |
|
simprr |
|
14 |
|
simpl2 |
|
15 |
8
|
fdmd |
|
16 |
|
f1dm |
|
17 |
14 16
|
syl |
|
18 |
15 17
|
eqtr3d |
|
19 |
9 18
|
eleqtrd |
|
20 |
11 18
|
eleqtrd |
|
21 |
|
f1fveq |
|
22 |
14 19 20 21
|
syl12anc |
|
23 |
22
|
necon3bid |
|
24 |
13 23
|
mpbird |
|
25 |
6
|
hausnei |
|
26 |
3 10 12 24 25
|
syl13anc |
|
27 |
|
simpll3 |
|
28 |
|
simprll |
|
29 |
|
cnima |
|
30 |
27 28 29
|
syl2anc |
|
31 |
|
simprlr |
|
32 |
|
cnima |
|
33 |
27 31 32
|
syl2anc |
|
34 |
9
|
adantr |
|
35 |
|
simprr1 |
|
36 |
8
|
adantr |
|
37 |
36
|
ffnd |
|
38 |
|
elpreima |
|
39 |
37 38
|
syl |
|
40 |
34 35 39
|
mpbir2and |
|
41 |
11
|
adantr |
|
42 |
|
simprr2 |
|
43 |
|
elpreima |
|
44 |
37 43
|
syl |
|
45 |
41 42 44
|
mpbir2and |
|
46 |
|
ffun |
|
47 |
|
inpreima |
|
48 |
36 46 47
|
3syl |
|
49 |
|
simprr3 |
|
50 |
49
|
imaeq2d |
|
51 |
|
ima0 |
|
52 |
50 51
|
eqtrdi |
|
53 |
48 52
|
eqtr3d |
|
54 |
|
eleq2 |
|
55 |
|
ineq1 |
|
56 |
55
|
eqeq1d |
|
57 |
54 56
|
3anbi13d |
|
58 |
|
eleq2 |
|
59 |
|
ineq2 |
|
60 |
59
|
eqeq1d |
|
61 |
58 60
|
3anbi23d |
|
62 |
57 61
|
rspc2ev |
|
63 |
30 33 40 45 53 62
|
syl113anc |
|
64 |
63
|
expr |
|
65 |
64
|
rexlimdvva |
|
66 |
26 65
|
mpd |
|
67 |
66
|
expr |
|
68 |
67
|
ralrimivva |
|
69 |
5
|
ishaus |
|
70 |
2 68 69
|
sylanbrc |
|