| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntop1 |  | 
						
							| 2 | 1 | 3ad2ant3 |  | 
						
							| 3 |  | simpl1 |  | 
						
							| 4 |  | simpl3 |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 5 6 | cnf |  | 
						
							| 8 | 4 7 | syl |  | 
						
							| 9 |  | simprll |  | 
						
							| 10 | 8 9 | ffvelcdmd |  | 
						
							| 11 |  | simprlr |  | 
						
							| 12 | 8 11 | ffvelcdmd |  | 
						
							| 13 |  | simprr |  | 
						
							| 14 |  | simpl2 |  | 
						
							| 15 | 8 | fdmd |  | 
						
							| 16 |  | f1dm |  | 
						
							| 17 | 14 16 | syl |  | 
						
							| 18 | 15 17 | eqtr3d |  | 
						
							| 19 | 9 18 | eleqtrd |  | 
						
							| 20 | 11 18 | eleqtrd |  | 
						
							| 21 |  | f1fveq |  | 
						
							| 22 | 14 19 20 21 | syl12anc |  | 
						
							| 23 | 22 | necon3bid |  | 
						
							| 24 | 13 23 | mpbird |  | 
						
							| 25 | 6 | hausnei |  | 
						
							| 26 | 3 10 12 24 25 | syl13anc |  | 
						
							| 27 |  | simpll3 |  | 
						
							| 28 |  | simprll |  | 
						
							| 29 |  | cnima |  | 
						
							| 30 | 27 28 29 | syl2anc |  | 
						
							| 31 |  | simprlr |  | 
						
							| 32 |  | cnima |  | 
						
							| 33 | 27 31 32 | syl2anc |  | 
						
							| 34 | 9 | adantr |  | 
						
							| 35 |  | simprr1 |  | 
						
							| 36 | 8 | adantr |  | 
						
							| 37 | 36 | ffnd |  | 
						
							| 38 |  | elpreima |  | 
						
							| 39 | 37 38 | syl |  | 
						
							| 40 | 34 35 39 | mpbir2and |  | 
						
							| 41 | 11 | adantr |  | 
						
							| 42 |  | simprr2 |  | 
						
							| 43 |  | elpreima |  | 
						
							| 44 | 37 43 | syl |  | 
						
							| 45 | 41 42 44 | mpbir2and |  | 
						
							| 46 |  | ffun |  | 
						
							| 47 |  | inpreima |  | 
						
							| 48 | 36 46 47 | 3syl |  | 
						
							| 49 |  | simprr3 |  | 
						
							| 50 | 49 | imaeq2d |  | 
						
							| 51 |  | ima0 |  | 
						
							| 52 | 50 51 | eqtrdi |  | 
						
							| 53 | 48 52 | eqtr3d |  | 
						
							| 54 |  | eleq2 |  | 
						
							| 55 |  | ineq1 |  | 
						
							| 56 | 55 | eqeq1d |  | 
						
							| 57 | 54 56 | 3anbi13d |  | 
						
							| 58 |  | eleq2 |  | 
						
							| 59 |  | ineq2 |  | 
						
							| 60 | 59 | eqeq1d |  | 
						
							| 61 | 58 60 | 3anbi23d |  | 
						
							| 62 | 57 61 | rspc2ev |  | 
						
							| 63 | 30 33 40 45 53 62 | syl113anc |  | 
						
							| 64 | 63 | expr |  | 
						
							| 65 | 64 | rexlimdvva |  | 
						
							| 66 | 26 65 | mpd |  | 
						
							| 67 | 66 | expr |  | 
						
							| 68 | 67 | ralrimivva |  | 
						
							| 69 | 5 | ishaus |  | 
						
							| 70 | 2 68 69 | sylanbrc |  |