Metamath Proof Explorer


Theorem cnheiborlem

Description: Lemma for cnheibor . (Contributed by Mario Carneiro, 14-Sep-2014)

Ref Expression
Hypotheses cnheibor.2 J = TopOpen fld
cnheibor.3 T = J 𝑡 X
cnheibor.4 F = x , y x + i y
cnheibor.5 Y = F R R × R R
Assertion cnheiborlem X Clsd J R z X z R T Comp

Proof

Step Hyp Ref Expression
1 cnheibor.2 J = TopOpen fld
2 cnheibor.3 T = J 𝑡 X
3 cnheibor.4 F = x , y x + i y
4 cnheibor.5 Y = F R R × R R
5 1 cnfldtop J Top
6 3 cnref1o F : 2 1-1 onto
7 f1ofn F : 2 1-1 onto F Fn 2
8 elpreima F Fn 2 u F -1 X u 2 F u X
9 6 7 8 mp2b u F -1 X u 2 F u X
10 1st2nd2 u 2 u = 1 st u 2 nd u
11 10 ad2antrl X Clsd J R z X z R u 2 F u X u = 1 st u 2 nd u
12 xp1st u 2 1 st u
13 12 ad2antrl X Clsd J R z X z R u 2 F u X 1 st u
14 13 recnd X Clsd J R z X z R u 2 F u X 1 st u
15 14 abscld X Clsd J R z X z R u 2 F u X 1 st u
16 1 cnfldtopon J TopOn
17 16 toponunii = J
18 17 cldss X Clsd J X
19 18 adantr X Clsd J R z X z R X
20 19 adantr X Clsd J R z X z R u 2 F u X X
21 simprr X Clsd J R z X z R u 2 F u X F u X
22 20 21 sseldd X Clsd J R z X z R u 2 F u X F u
23 22 abscld X Clsd J R z X z R u 2 F u X F u
24 simplrl X Clsd J R z X z R u 2 F u X R
25 simprl X Clsd J R z X z R u 2 F u X u 2
26 f1ocnvfv1 F : 2 1-1 onto u 2 F -1 F u = u
27 6 25 26 sylancr X Clsd J R z X z R u 2 F u X F -1 F u = u
28 fveq2 z = F u z = F u
29 fveq2 z = F u z = F u
30 28 29 opeq12d z = F u z z = F u F u
31 3 cnrecnv F -1 = z z z
32 opex F u F u V
33 30 31 32 fvmpt F u F -1 F u = F u F u
34 22 33 syl X Clsd J R z X z R u 2 F u X F -1 F u = F u F u
35 27 34 eqtr3d X Clsd J R z X z R u 2 F u X u = F u F u
36 35 fveq2d X Clsd J R z X z R u 2 F u X 1 st u = 1 st F u F u
37 fvex F u V
38 fvex F u V
39 37 38 op1st 1 st F u F u = F u
40 36 39 eqtrdi X Clsd J R z X z R u 2 F u X 1 st u = F u
41 40 fveq2d X Clsd J R z X z R u 2 F u X 1 st u = F u
42 absrele F u F u F u
43 22 42 syl X Clsd J R z X z R u 2 F u X F u F u
44 41 43 eqbrtrd X Clsd J R z X z R u 2 F u X 1 st u F u
45 fveq2 z = F u z = F u
46 45 breq1d z = F u z R F u R
47 simplrr X Clsd J R z X z R u 2 F u X z X z R
48 46 47 21 rspcdva X Clsd J R z X z R u 2 F u X F u R
49 15 23 24 44 48 letrd X Clsd J R z X z R u 2 F u X 1 st u R
50 13 24 absled X Clsd J R z X z R u 2 F u X 1 st u R R 1 st u 1 st u R
51 49 50 mpbid X Clsd J R z X z R u 2 F u X R 1 st u 1 st u R
52 51 simpld X Clsd J R z X z R u 2 F u X R 1 st u
53 51 simprd X Clsd J R z X z R u 2 F u X 1 st u R
54 renegcl R R
55 24 54 syl X Clsd J R z X z R u 2 F u X R
56 elicc2 R R 1 st u R R 1 st u R 1 st u 1 st u R
57 55 24 56 syl2anc X Clsd J R z X z R u 2 F u X 1 st u R R 1 st u R 1 st u 1 st u R
58 13 52 53 57 mpbir3and X Clsd J R z X z R u 2 F u X 1 st u R R
59 xp2nd u 2 2 nd u
60 59 ad2antrl X Clsd J R z X z R u 2 F u X 2 nd u
61 60 recnd X Clsd J R z X z R u 2 F u X 2 nd u
62 61 abscld X Clsd J R z X z R u 2 F u X 2 nd u
63 35 fveq2d X Clsd J R z X z R u 2 F u X 2 nd u = 2 nd F u F u
64 37 38 op2nd 2 nd F u F u = F u
65 63 64 eqtrdi X Clsd J R z X z R u 2 F u X 2 nd u = F u
66 65 fveq2d X Clsd J R z X z R u 2 F u X 2 nd u = F u
67 absimle F u F u F u
68 22 67 syl X Clsd J R z X z R u 2 F u X F u F u
69 66 68 eqbrtrd X Clsd J R z X z R u 2 F u X 2 nd u F u
70 62 23 24 69 48 letrd X Clsd J R z X z R u 2 F u X 2 nd u R
71 60 24 absled X Clsd J R z X z R u 2 F u X 2 nd u R R 2 nd u 2 nd u R
72 70 71 mpbid X Clsd J R z X z R u 2 F u X R 2 nd u 2 nd u R
73 72 simpld X Clsd J R z X z R u 2 F u X R 2 nd u
74 72 simprd X Clsd J R z X z R u 2 F u X 2 nd u R
75 elicc2 R R 2 nd u R R 2 nd u R 2 nd u 2 nd u R
76 55 24 75 syl2anc X Clsd J R z X z R u 2 F u X 2 nd u R R 2 nd u R 2 nd u 2 nd u R
77 60 73 74 76 mpbir3and X Clsd J R z X z R u 2 F u X 2 nd u R R
78 58 77 opelxpd X Clsd J R z X z R u 2 F u X 1 st u 2 nd u R R × R R
79 11 78 eqeltrd X Clsd J R z X z R u 2 F u X u R R × R R
80 79 ex X Clsd J R z X z R u 2 F u X u R R × R R
81 9 80 syl5bi X Clsd J R z X z R u F -1 X u R R × R R
82 81 ssrdv X Clsd J R z X z R F -1 X R R × R R
83 f1ofun F : 2 1-1 onto Fun F
84 6 83 ax-mp Fun F
85 f1ofo F : 2 1-1 onto F : 2 onto
86 forn F : 2 onto ran F =
87 6 85 86 mp2b ran F =
88 19 87 sseqtrrdi X Clsd J R z X z R X ran F
89 funimass1 Fun F X ran F F -1 X R R × R R X F R R × R R
90 84 88 89 sylancr X Clsd J R z X z R F -1 X R R × R R X F R R × R R
91 82 90 mpd X Clsd J R z X z R X F R R × R R
92 91 4 sseqtrrdi X Clsd J R z X z R X Y
93 eqid topGen ran . = topGen ran .
94 3 93 1 cnrehmeo F topGen ran . × t topGen ran . Homeo J
95 imaexg F topGen ran . × t topGen ran . Homeo J F R R × R R V
96 94 95 ax-mp F R R × R R V
97 4 96 eqeltri Y V
98 97 a1i X Clsd J R z X z R Y V
99 restabs J Top X Y Y V J 𝑡 Y 𝑡 X = J 𝑡 X
100 5 92 98 99 mp3an2i X Clsd J R z X z R J 𝑡 Y 𝑡 X = J 𝑡 X
101 100 2 eqtr4di X Clsd J R z X z R J 𝑡 Y 𝑡 X = T
102 4 oveq2i J 𝑡 Y = J 𝑡 F R R × R R
103 ishmeo F topGen ran . × t topGen ran . Homeo J F topGen ran . × t topGen ran . Cn J F -1 J Cn topGen ran . × t topGen ran .
104 94 103 mpbi F topGen ran . × t topGen ran . Cn J F -1 J Cn topGen ran . × t topGen ran .
105 104 simpli F topGen ran . × t topGen ran . Cn J
106 iccssre R R R R
107 54 106 mpancom R R R
108 1 93 rerest R R J 𝑡 R R = topGen ran . 𝑡 R R
109 107 108 syl R J 𝑡 R R = topGen ran . 𝑡 R R
110 109 109 oveq12d R J 𝑡 R R × t J 𝑡 R R = topGen ran . 𝑡 R R × t topGen ran . 𝑡 R R
111 retop topGen ran . Top
112 ovex R R V
113 txrest topGen ran . Top topGen ran . Top R R V R R V topGen ran . × t topGen ran . 𝑡 R R × R R = topGen ran . 𝑡 R R × t topGen ran . 𝑡 R R
114 111 111 112 112 113 mp4an topGen ran . × t topGen ran . 𝑡 R R × R R = topGen ran . 𝑡 R R × t topGen ran . 𝑡 R R
115 110 114 eqtr4di R J 𝑡 R R × t J 𝑡 R R = topGen ran . × t topGen ran . 𝑡 R R × R R
116 eqid topGen ran . 𝑡 R R = topGen ran . 𝑡 R R
117 93 116 icccmp R R topGen ran . 𝑡 R R Comp
118 54 117 mpancom R topGen ran . 𝑡 R R Comp
119 109 118 eqeltrd R J 𝑡 R R Comp
120 txcmp J 𝑡 R R Comp J 𝑡 R R Comp J 𝑡 R R × t J 𝑡 R R Comp
121 119 119 120 syl2anc R J 𝑡 R R × t J 𝑡 R R Comp
122 115 121 eqeltrrd R topGen ran . × t topGen ran . 𝑡 R R × R R Comp
123 imacmp F topGen ran . × t topGen ran . Cn J topGen ran . × t topGen ran . 𝑡 R R × R R Comp J 𝑡 F R R × R R Comp
124 105 122 123 sylancr R J 𝑡 F R R × R R Comp
125 102 124 eqeltrid R J 𝑡 Y Comp
126 125 ad2antrl X Clsd J R z X z R J 𝑡 Y Comp
127 imassrn F R R × R R ran F
128 4 127 eqsstri Y ran F
129 f1of F : 2 1-1 onto F : 2
130 frn F : 2 ran F
131 6 129 130 mp2b ran F
132 128 131 sstri Y
133 simpl X Clsd J R z X z R X Clsd J
134 17 restcldi Y X Clsd J X Y X Clsd J 𝑡 Y
135 132 133 92 134 mp3an2i X Clsd J R z X z R X Clsd J 𝑡 Y
136 cmpcld J 𝑡 Y Comp X Clsd J 𝑡 Y J 𝑡 Y 𝑡 X Comp
137 126 135 136 syl2anc X Clsd J R z X z R J 𝑡 Y 𝑡 X Comp
138 101 137 eqeltrrd X Clsd J R z X z R T Comp