Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
|
2 |
|
ral0 |
|
3 |
|
simp1 |
|
4 |
3
|
rexrd |
|
5 |
|
simp2 |
|
6 |
5
|
rexrd |
|
7 |
|
icc0 |
|
8 |
4 6 7
|
syl2anc |
|
9 |
8
|
biimpar |
|
10 |
9
|
raleqdv |
|
11 |
2 10
|
mpbiri |
|
12 |
|
brralrspcev |
|
13 |
1 11 12
|
sylancr |
|
14 |
3
|
adantr |
|
15 |
5
|
adantr |
|
16 |
|
simpr |
|
17 |
|
simp3 |
|
18 |
|
abscncf |
|
19 |
18
|
a1i |
|
20 |
17 19
|
cncfco |
|
21 |
20
|
adantr |
|
22 |
14 15 16 21
|
evthicc |
|
23 |
22
|
simpld |
|
24 |
|
cncff |
|
25 |
20 24
|
syl |
|
26 |
25
|
ffvelrnda |
|
27 |
|
cncff |
|
28 |
17 27
|
syl |
|
29 |
28
|
adantr |
|
30 |
|
fvco3 |
|
31 |
29 30
|
sylan |
|
32 |
31
|
breq1d |
|
33 |
32
|
ralbidva |
|
34 |
33
|
biimpd |
|
35 |
|
brralrspcev |
|
36 |
26 34 35
|
syl6an |
|
37 |
36
|
rexlimdva |
|
38 |
37
|
imp |
|
39 |
23 38
|
syldan |
|
40 |
13 39 5 3
|
ltlecasei |
|