Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue integration
Lesbesgue integral
cnicciblnc
Next ⟩
itggt0
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnicciblnc
Description:
Choice-free proof of
cniccibl
.
(Contributed by
Brendan Leahy
, 2-Nov-2017)
Ref
Expression
Assertion
cnicciblnc
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
F
:
A
B
⟶
cn
ℂ
→
F
∈
𝐿
1
Proof
Step
Hyp
Ref
Expression
1
iccmbl
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
B
∈
dom
⁡
vol
2
cnmbf
⊢
A
B
∈
dom
⁡
vol
∧
F
:
A
B
⟶
cn
ℂ
→
F
∈
MblFn
3
1
2
stoic3
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
F
:
A
B
⟶
cn
ℂ
→
F
∈
MblFn
4
simp3
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
F
:
A
B
⟶
cn
ℂ
→
F
:
A
B
⟶
cn
ℂ
5
cncff
⊢
F
:
A
B
⟶
cn
ℂ
→
F
:
A
B
⟶
ℂ
6
fdm
⊢
F
:
A
B
⟶
ℂ
→
dom
⁡
F
=
A
B
7
4
5
6
3syl
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
F
:
A
B
⟶
cn
ℂ
→
dom
⁡
F
=
A
B
8
7
fveq2d
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
F
:
A
B
⟶
cn
ℂ
→
vol
⁡
dom
⁡
F
=
vol
⁡
A
B
9
iccvolcl
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
vol
⁡
A
B
∈
ℝ
10
9
3adant3
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
F
:
A
B
⟶
cn
ℂ
→
vol
⁡
A
B
∈
ℝ
11
8
10
eqeltrd
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
F
:
A
B
⟶
cn
ℂ
→
vol
⁡
dom
⁡
F
∈
ℝ
12
cniccbdd
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
F
:
A
B
⟶
cn
ℂ
→
∃
x
∈
ℝ
∀
y
∈
A
B
F
⁡
y
≤
x
13
7
raleqdv
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
F
:
A
B
⟶
cn
ℂ
→
∀
y
∈
dom
⁡
F
F
⁡
y
≤
x
↔
∀
y
∈
A
B
F
⁡
y
≤
x
14
13
rexbidv
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
F
:
A
B
⟶
cn
ℂ
→
∃
x
∈
ℝ
∀
y
∈
dom
⁡
F
F
⁡
y
≤
x
↔
∃
x
∈
ℝ
∀
y
∈
A
B
F
⁡
y
≤
x
15
12
14
mpbird
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
F
:
A
B
⟶
cn
ℂ
→
∃
x
∈
ℝ
∀
y
∈
dom
⁡
F
F
⁡
y
≤
x
16
bddiblnc
⊢
F
∈
MblFn
∧
vol
⁡
dom
⁡
F
∈
ℝ
∧
∃
x
∈
ℝ
∀
y
∈
dom
⁡
F
F
⁡
y
≤
x
→
F
∈
𝐿
1
17
3
11
15
16
syl3anc
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
F
:
A
B
⟶
cn
ℂ
→
F
∈
𝐿
1