Metamath Proof Explorer


Theorem cnims

Description: The metric induced on the complex numbers. cnmet proves that it is a metric. (Contributed by Steve Rodriguez, 5-Dec-2006) (Revised by NM, 15-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses cnims.6 U = + × abs
cnims.7 D = abs
Assertion cnims D = IndMet U

Proof

Step Hyp Ref Expression
1 cnims.6 U = + × abs
2 cnims.7 D = abs
3 1 cnnv U NrmCVec
4 1 cnnvm = - v U
5 1 cnnvnm abs = norm CV U
6 eqid IndMet U = IndMet U
7 4 5 6 imsval U NrmCVec IndMet U = abs
8 3 7 ax-mp IndMet U = abs
9 2 8 eqtr4i D = IndMet U