Metamath Proof Explorer


Theorem cnlimci

Description: If F is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses cnlimci.f φ F : A cn D
cnlimci.c φ B A
Assertion cnlimci φ F B F lim B

Proof

Step Hyp Ref Expression
1 cnlimci.f φ F : A cn D
2 cnlimci.c φ B A
3 fveq2 x = B F x = F B
4 oveq2 x = B F lim x = F lim B
5 3 4 eleq12d x = B F x F lim x F B F lim B
6 cncfrss F : A cn D A
7 1 6 syl φ A
8 cncfrss2 F : A cn D D
9 1 8 syl φ D
10 ssid
11 cncfss D A cn D A cn
12 9 10 11 sylancl φ A cn D A cn
13 12 1 sseldd φ F : A cn
14 cnlimc A F : A cn F : A x A F x F lim x
15 14 simplbda A F : A cn x A F x F lim x
16 7 13 15 syl2anc φ x A F x F lim x
17 5 16 2 rspcdva φ F B F lim B