Step |
Hyp |
Ref |
Expression |
1 |
|
cnlmod.w |
|
2 |
|
0cn |
|
3 |
1
|
cnlmodlem1 |
|
4 |
3
|
eqcomi |
|
5 |
4
|
a1i |
|
6 |
1
|
cnlmodlem2 |
|
7 |
6
|
eqcomi |
|
8 |
7
|
a1i |
|
9 |
|
addcl |
|
10 |
9
|
3adant1 |
|
11 |
|
addass |
|
12 |
11
|
adantl |
|
13 |
|
id |
|
14 |
|
addid2 |
|
15 |
14
|
adantl |
|
16 |
|
negcl |
|
17 |
16
|
adantl |
|
18 |
|
id |
|
19 |
16 18
|
addcomd |
|
20 |
19
|
adantl |
|
21 |
|
negid |
|
22 |
21
|
adantl |
|
23 |
20 22
|
eqtrd |
|
24 |
5 8 10 12 13 15 17 23
|
isgrpd |
|
25 |
4
|
a1i |
|
26 |
7
|
a1i |
|
27 |
1
|
cnlmodlem3 |
|
28 |
27
|
eqcomi |
|
29 |
28
|
a1i |
|
30 |
1
|
cnlmod4 |
|
31 |
30
|
eqcomi |
|
32 |
31
|
a1i |
|
33 |
|
cnfldbas |
|
34 |
33
|
a1i |
|
35 |
|
cnfldadd |
|
36 |
35
|
a1i |
|
37 |
|
cnfldmul |
|
38 |
37
|
a1i |
|
39 |
|
cnfld1 |
|
40 |
39
|
a1i |
|
41 |
|
cnring |
|
42 |
41
|
a1i |
|
43 |
|
id |
|
44 |
|
mulcl |
|
45 |
44
|
3adant1 |
|
46 |
|
adddi |
|
47 |
46
|
adantl |
|
48 |
|
adddir |
|
49 |
48
|
adantl |
|
50 |
|
mulass |
|
51 |
50
|
adantl |
|
52 |
|
mulid2 |
|
53 |
52
|
adantl |
|
54 |
25 26 29 32 34 36 38 40 42 43 45 47 49 51 53
|
islmodd |
|
55 |
2 24 54
|
mp2b |
|