| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnlmod.w |
|
| 2 |
|
0cn |
|
| 3 |
1
|
cnlmodlem1 |
|
| 4 |
3
|
eqcomi |
|
| 5 |
4
|
a1i |
|
| 6 |
1
|
cnlmodlem2 |
|
| 7 |
6
|
eqcomi |
|
| 8 |
7
|
a1i |
|
| 9 |
|
addcl |
|
| 10 |
9
|
3adant1 |
|
| 11 |
|
addass |
|
| 12 |
11
|
adantl |
|
| 13 |
|
id |
|
| 14 |
|
addlid |
|
| 15 |
14
|
adantl |
|
| 16 |
|
negcl |
|
| 17 |
16
|
adantl |
|
| 18 |
|
id |
|
| 19 |
16 18
|
addcomd |
|
| 20 |
19
|
adantl |
|
| 21 |
|
negid |
|
| 22 |
21
|
adantl |
|
| 23 |
20 22
|
eqtrd |
|
| 24 |
5 8 10 12 13 15 17 23
|
isgrpd |
|
| 25 |
4
|
a1i |
|
| 26 |
7
|
a1i |
|
| 27 |
1
|
cnlmodlem3 |
|
| 28 |
27
|
eqcomi |
|
| 29 |
28
|
a1i |
|
| 30 |
1
|
cnlmod4 |
|
| 31 |
30
|
eqcomi |
|
| 32 |
31
|
a1i |
|
| 33 |
|
cnfldbas |
|
| 34 |
33
|
a1i |
|
| 35 |
|
cnfldadd |
|
| 36 |
35
|
a1i |
|
| 37 |
|
cnfldmul |
|
| 38 |
37
|
a1i |
|
| 39 |
|
cnfld1 |
|
| 40 |
39
|
a1i |
|
| 41 |
|
cnring |
|
| 42 |
41
|
a1i |
|
| 43 |
|
id |
|
| 44 |
|
mulcl |
|
| 45 |
44
|
3adant1 |
|
| 46 |
|
adddi |
|
| 47 |
46
|
adantl |
|
| 48 |
|
adddir |
|
| 49 |
48
|
adantl |
|
| 50 |
|
mulass |
|
| 51 |
50
|
adantl |
|
| 52 |
|
mullid |
|
| 53 |
52
|
adantl |
|
| 54 |
25 26 29 32 34 36 38 40 42 43 45 47 49 51 53
|
islmodd |
|
| 55 |
2 24 54
|
mp2b |
|