Metamath Proof Explorer


Theorem cnlmod4

Description: Lemma 4 for cnlmod . (Contributed by AV, 20-Sep-2021)

Ref Expression
Hypothesis cnlmod.w W = Base ndx + ndx + Scalar ndx fld ndx ×
Assertion cnlmod4 W = ×

Proof

Step Hyp Ref Expression
1 cnlmod.w W = Base ndx + ndx + Scalar ndx fld ndx ×
2 mulex × V
3 qdass Base ndx + ndx + Scalar ndx fld ndx × = Base ndx + ndx + Scalar ndx fld ndx ×
4 1 3 eqtri W = Base ndx + ndx + Scalar ndx fld ndx ×
5 4 lmodvsca × V × = W
6 5 eqcomd × V W = ×
7 2 6 ax-mp W = ×