Metamath Proof Explorer


Theorem cnlmodlem1

Description: Lemma 1 for cnlmod . (Contributed by AV, 20-Sep-2021)

Ref Expression
Hypothesis cnlmod.w W = Base ndx + ndx + Scalar ndx fld ndx ×
Assertion cnlmodlem1 Base W =

Proof

Step Hyp Ref Expression
1 cnlmod.w W = Base ndx + ndx + Scalar ndx fld ndx ×
2 cnex V
3 qdass Base ndx + ndx + Scalar ndx fld ndx × = Base ndx + ndx + Scalar ndx fld ndx ×
4 1 3 eqtri W = Base ndx + ndx + Scalar ndx fld ndx ×
5 4 lmodbase V = Base W
6 5 eqcomd V Base W =
7 2 6 ax-mp Base W =