Database
BASIC TOPOLOGY
Metric subcomplex vector spaces
Subcomplex vector spaces
cnlmodlem3
Next ⟩
cnlmod4
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnlmodlem3
Description:
Lemma 3 for
cnlmod
.
(Contributed by
AV
, 20-Sep-2021)
Ref
Expression
Hypothesis
cnlmod.w
⊢
W
=
Base
ndx
ℂ
+
ndx
+
∪
Scalar
⁡
ndx
ℂ
fld
⋅
ndx
×
Assertion
cnlmodlem3
⊢
Scalar
⁡
W
=
ℂ
fld
Proof
Step
Hyp
Ref
Expression
1
cnlmod.w
⊢
W
=
Base
ndx
ℂ
+
ndx
+
∪
Scalar
⁡
ndx
ℂ
fld
⋅
ndx
×
2
cnfldex
⊢
ℂ
fld
∈
V
3
qdass
⊢
Base
ndx
ℂ
+
ndx
+
∪
Scalar
⁡
ndx
ℂ
fld
⋅
ndx
×
=
Base
ndx
ℂ
+
ndx
+
Scalar
⁡
ndx
ℂ
fld
∪
⋅
ndx
×
4
1
3
eqtri
⊢
W
=
Base
ndx
ℂ
+
ndx
+
Scalar
⁡
ndx
ℂ
fld
∪
⋅
ndx
×
5
4
lmodsca
⊢
ℂ
fld
∈
V
→
ℂ
fld
=
Scalar
⁡
W
6
5
eqcomd
⊢
ℂ
fld
∈
V
→
Scalar
⁡
W
=
ℂ
fld
7
2
6
ax-mp
⊢
Scalar
⁡
W
=
ℂ
fld