Metamath Proof Explorer


Theorem cnlmodlem3

Description: Lemma 3 for cnlmod . (Contributed by AV, 20-Sep-2021)

Ref Expression
Hypothesis cnlmod.w W = Base ndx + ndx + Scalar ndx fld ndx ×
Assertion cnlmodlem3 Scalar W = fld

Proof

Step Hyp Ref Expression
1 cnlmod.w W = Base ndx + ndx + Scalar ndx fld ndx ×
2 cnfldex fld V
3 qdass Base ndx + ndx + Scalar ndx fld ndx × = Base ndx + ndx + Scalar ndx fld ndx ×
4 1 3 eqtri W = Base ndx + ndx + Scalar ndx fld ndx ×
5 4 lmodsca fld V fld = Scalar W
6 5 eqcomd fld V Scalar W = fld
7 2 6 ax-mp Scalar W = fld