Metamath Proof Explorer


Theorem cnlnadjeu

Description: Every continuous linear operator has a unique adjoint. Theorem 3.10 of Beran p. 104. (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion cnlnadjeu T LinOp ContOp ∃! t LinOp ContOp x y T x ih y = x ih t y

Proof

Step Hyp Ref Expression
1 fveq1 T = if T LinOp ContOp T 0 hop T x = if T LinOp ContOp T 0 hop x
2 1 oveq1d T = if T LinOp ContOp T 0 hop T x ih y = if T LinOp ContOp T 0 hop x ih y
3 2 eqeq1d T = if T LinOp ContOp T 0 hop T x ih y = x ih t y if T LinOp ContOp T 0 hop x ih y = x ih t y
4 3 2ralbidv T = if T LinOp ContOp T 0 hop x y T x ih y = x ih t y x y if T LinOp ContOp T 0 hop x ih y = x ih t y
5 4 reubidv T = if T LinOp ContOp T 0 hop ∃! t LinOp ContOp x y T x ih y = x ih t y ∃! t LinOp ContOp x y if T LinOp ContOp T 0 hop x ih y = x ih t y
6 inss1 LinOp ContOp LinOp
7 0lnop 0 hop LinOp
8 0cnop 0 hop ContOp
9 elin 0 hop LinOp ContOp 0 hop LinOp 0 hop ContOp
10 7 8 9 mpbir2an 0 hop LinOp ContOp
11 10 elimel if T LinOp ContOp T 0 hop LinOp ContOp
12 6 11 sselii if T LinOp ContOp T 0 hop LinOp
13 inss2 LinOp ContOp ContOp
14 13 11 sselii if T LinOp ContOp T 0 hop ContOp
15 12 14 cnlnadjeui ∃! t LinOp ContOp x y if T LinOp ContOp T 0 hop x ih y = x ih t y
16 5 15 dedth T LinOp ContOp ∃! t LinOp ContOp x y T x ih y = x ih t y