Metamath Proof Explorer


Theorem cnlnadji

Description: Every continuous linear operator has an adjoint. Theorem 3.10 of Beran p. 104. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses cnlnadj.1 T LinOp
cnlnadj.2 T ContOp
Assertion cnlnadji t LinOp ContOp x y T x ih y = x ih t y

Proof

Step Hyp Ref Expression
1 cnlnadj.1 T LinOp
2 cnlnadj.2 T ContOp
3 eqid g T g ih z = g T g ih z
4 oveq2 f = w v ih f = v ih w
5 4 eqeq2d f = w T v ih z = v ih f T v ih z = v ih w
6 5 ralbidv f = w v T v ih z = v ih f v T v ih z = v ih w
7 6 cbvriotavw ι f | v T v ih z = v ih f = ι w | v T v ih z = v ih w
8 eqid z ι f | v T v ih z = v ih f = z ι f | v T v ih z = v ih f
9 1 2 3 7 8 cnlnadjlem9 t LinOp ContOp x y T x ih y = x ih t y