Metamath Proof Explorer


Theorem cnlnadjlem3

Description: Lemma for cnlnadji . By riesz4 , B is the unique vector such that ( Tv ) .ih y ) = ( v .ih w ) for all v . (Contributed by NM, 17-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses cnlnadjlem.1 T LinOp
cnlnadjlem.2 T ContOp
cnlnadjlem.3 G = g T g ih y
cnlnadjlem.4 B = ι w | v T v ih y = v ih w
Assertion cnlnadjlem3 y B

Proof

Step Hyp Ref Expression
1 cnlnadjlem.1 T LinOp
2 cnlnadjlem.2 T ContOp
3 cnlnadjlem.3 G = g T g ih y
4 cnlnadjlem.4 B = ι w | v T v ih y = v ih w
5 1 2 3 cnlnadjlem2 y G LinFn G ContFn
6 elin G LinFn ContFn G LinFn G ContFn
7 5 6 sylibr y G LinFn ContFn
8 riesz4 G LinFn ContFn ∃! w v G v = v ih w
9 7 8 syl y ∃! w v G v = v ih w
10 1 2 3 cnlnadjlem1 v G v = T v ih y
11 10 eqeq1d v G v = v ih w T v ih y = v ih w
12 11 ralbiia v G v = v ih w v T v ih y = v ih w
13 12 reubii ∃! w v G v = v ih w ∃! w v T v ih y = v ih w
14 9 13 sylib y ∃! w v T v ih y = v ih w
15 riotacl ∃! w v T v ih y = v ih w ι w | v T v ih y = v ih w
16 14 15 syl y ι w | v T v ih y = v ih w
17 4 16 eqeltrid y B