Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Operators on Hilbert spaces
Adjoints (cont.)
cnlnadjlem4
Metamath Proof Explorer
Description: Lemma for cnlnadji . The values of auxiliary function F are
vectors. (Contributed by NM , 17-Feb-2006) (Proof shortened by Mario
Carneiro , 10-Sep-2015) (New usage is discouraged.)
Ref
Expression
Hypotheses
cnlnadjlem.1
⊢ T ∈ LinOp
cnlnadjlem.2
⊢ T ∈ ContOp
cnlnadjlem.3
⊢ G = g ∈ ℋ ⟼ T ⁡ g ⋅ ih y
cnlnadjlem.4
⊢ B = ι w ∈ ℋ | ∀ v ∈ ℋ T ⁡ v ⋅ ih y = v ⋅ ih w
cnlnadjlem.5
⊢ F = y ∈ ℋ ⟼ B
Assertion
cnlnadjlem4
⊢ A ∈ ℋ → F ⁡ A ∈ ℋ
Proof
Step
Hyp
Ref
Expression
1
cnlnadjlem.1
⊢ T ∈ LinOp
2
cnlnadjlem.2
⊢ T ∈ ContOp
3
cnlnadjlem.3
⊢ G = g ∈ ℋ ⟼ T ⁡ g ⋅ ih y
4
cnlnadjlem.4
⊢ B = ι w ∈ ℋ | ∀ v ∈ ℋ T ⁡ v ⋅ ih y = v ⋅ ih w
5
cnlnadjlem.5
⊢ F = y ∈ ℋ ⟼ B
6
1 2 3 4
cnlnadjlem3
⊢ y ∈ ℋ → B ∈ ℋ
7
5 6
fmpti
⊢ F : ℋ ⟶ ℋ
8
7
ffvelrni
⊢ A ∈ ℋ → F ⁡ A ∈ ℋ