| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnlnadjlem.1 |
|
| 2 |
|
cnlnadjlem.2 |
|
| 3 |
|
cnlnadjlem.3 |
|
| 4 |
|
cnlnadjlem.4 |
|
| 5 |
|
cnlnadjlem.5 |
|
| 6 |
|
nfcv |
|
| 7 |
|
nfcv |
|
| 8 |
|
nfcv |
|
| 9 |
|
nfcv |
|
| 10 |
|
nfmpt1 |
|
| 11 |
5 10
|
nfcxfr |
|
| 12 |
11 6
|
nffv |
|
| 13 |
8 9 12
|
nfov |
|
| 14 |
13
|
nfeq2 |
|
| 15 |
7 14
|
nfralw |
|
| 16 |
|
oveq2 |
|
| 17 |
|
fveq2 |
|
| 18 |
17
|
oveq2d |
|
| 19 |
16 18
|
eqeq12d |
|
| 20 |
19
|
ralbidv |
|
| 21 |
|
riotaex |
|
| 22 |
4 21
|
eqeltri |
|
| 23 |
5
|
fvmpt2 |
|
| 24 |
22 23
|
mpan2 |
|
| 25 |
|
fveq2 |
|
| 26 |
25
|
oveq1d |
|
| 27 |
|
oveq1 |
|
| 28 |
26 27
|
eqeq12d |
|
| 29 |
28
|
cbvralvw |
|
| 30 |
29
|
a1i |
|
| 31 |
1 2 3
|
cnlnadjlem1 |
|
| 32 |
31
|
eqeq1d |
|
| 33 |
32
|
ralbiia |
|
| 34 |
30 33
|
bitr4di |
|
| 35 |
34
|
riotabiia |
|
| 36 |
4 35
|
eqtri |
|
| 37 |
1 2 3
|
cnlnadjlem2 |
|
| 38 |
|
elin |
|
| 39 |
37 38
|
sylibr |
|
| 40 |
|
riesz4 |
|
| 41 |
|
riotacl2 |
|
| 42 |
39 40 41
|
3syl |
|
| 43 |
36 42
|
eqeltrid |
|
| 44 |
24 43
|
eqeltrd |
|
| 45 |
|
oveq2 |
|
| 46 |
45
|
eqeq2d |
|
| 47 |
46
|
ralbidv |
|
| 48 |
33 47
|
bitrid |
|
| 49 |
48
|
elrab |
|
| 50 |
49
|
simprbi |
|
| 51 |
44 50
|
syl |
|
| 52 |
6 15 20 51
|
vtoclgaf |
|
| 53 |
|
fveq2 |
|
| 54 |
53
|
oveq1d |
|
| 55 |
|
oveq1 |
|
| 56 |
54 55
|
eqeq12d |
|
| 57 |
56
|
rspccva |
|
| 58 |
52 57
|
sylan |
|