Step |
Hyp |
Ref |
Expression |
1 |
|
cnlnadjlem.1 |
|
2 |
|
cnlnadjlem.2 |
|
3 |
|
cnlnadjlem.3 |
|
4 |
|
cnlnadjlem.4 |
|
5 |
|
cnlnadjlem.5 |
|
6 |
|
nfcv |
|
7 |
|
nfcv |
|
8 |
|
nfcv |
|
9 |
|
nfcv |
|
10 |
|
nfmpt1 |
|
11 |
5 10
|
nfcxfr |
|
12 |
11 6
|
nffv |
|
13 |
8 9 12
|
nfov |
|
14 |
13
|
nfeq2 |
|
15 |
7 14
|
nfralw |
|
16 |
|
oveq2 |
|
17 |
|
fveq2 |
|
18 |
17
|
oveq2d |
|
19 |
16 18
|
eqeq12d |
|
20 |
19
|
ralbidv |
|
21 |
|
riotaex |
|
22 |
4 21
|
eqeltri |
|
23 |
5
|
fvmpt2 |
|
24 |
22 23
|
mpan2 |
|
25 |
|
fveq2 |
|
26 |
25
|
oveq1d |
|
27 |
|
oveq1 |
|
28 |
26 27
|
eqeq12d |
|
29 |
28
|
cbvralvw |
|
30 |
29
|
a1i |
|
31 |
1 2 3
|
cnlnadjlem1 |
|
32 |
31
|
eqeq1d |
|
33 |
32
|
ralbiia |
|
34 |
30 33
|
bitr4di |
|
35 |
34
|
riotabiia |
|
36 |
4 35
|
eqtri |
|
37 |
1 2 3
|
cnlnadjlem2 |
|
38 |
|
elin |
|
39 |
37 38
|
sylibr |
|
40 |
|
riesz4 |
|
41 |
|
riotacl2 |
|
42 |
39 40 41
|
3syl |
|
43 |
36 42
|
eqeltrid |
|
44 |
24 43
|
eqeltrd |
|
45 |
|
oveq2 |
|
46 |
45
|
eqeq2d |
|
47 |
46
|
ralbidv |
|
48 |
33 47
|
syl5bb |
|
49 |
48
|
elrab |
|
50 |
49
|
simprbi |
|
51 |
44 50
|
syl |
|
52 |
6 15 20 51
|
vtoclgaf |
|
53 |
|
fveq2 |
|
54 |
53
|
oveq1d |
|
55 |
|
oveq1 |
|
56 |
54 55
|
eqeq12d |
|
57 |
56
|
rspccva |
|
58 |
52 57
|
sylan |
|