| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnlnadjlem.1 |
|
| 2 |
|
cnlnadjlem.2 |
|
| 3 |
|
cnlnadjlem.3 |
|
| 4 |
|
cnlnadjlem.4 |
|
| 5 |
|
cnlnadjlem.5 |
|
| 6 |
1 2 3 4
|
cnlnadjlem3 |
|
| 7 |
5 6
|
fmpti |
|
| 8 |
1
|
lnopfi |
|
| 9 |
8
|
ffvelcdmi |
|
| 10 |
9
|
adantl |
|
| 11 |
|
hvmulcl |
|
| 12 |
11
|
ad2antrr |
|
| 13 |
|
simplr |
|
| 14 |
|
his7 |
|
| 15 |
10 12 13 14
|
syl3anc |
|
| 16 |
|
hvaddcl |
|
| 17 |
11 16
|
sylan |
|
| 18 |
1 2 3 4 5
|
cnlnadjlem5 |
|
| 19 |
17 18
|
sylan |
|
| 20 |
|
simpll |
|
| 21 |
9
|
adantl |
|
| 22 |
|
simplr |
|
| 23 |
|
his5 |
|
| 24 |
20 21 22 23
|
syl3anc |
|
| 25 |
|
simpr |
|
| 26 |
1 2 3 4 5
|
cnlnadjlem4 |
|
| 27 |
26
|
ad2antlr |
|
| 28 |
|
his5 |
|
| 29 |
20 25 27 28
|
syl3anc |
|
| 30 |
1 2 3 4 5
|
cnlnadjlem5 |
|
| 31 |
30
|
adantll |
|
| 32 |
31
|
oveq2d |
|
| 33 |
29 32
|
eqtr4d |
|
| 34 |
24 33
|
eqtr4d |
|
| 35 |
34
|
adantlr |
|
| 36 |
1 2 3 4 5
|
cnlnadjlem5 |
|
| 37 |
36
|
adantll |
|
| 38 |
35 37
|
oveq12d |
|
| 39 |
|
simpr |
|
| 40 |
|
hvmulcl |
|
| 41 |
26 40
|
sylan2 |
|
| 42 |
41
|
ad2antrr |
|
| 43 |
1 2 3 4 5
|
cnlnadjlem4 |
|
| 44 |
43
|
ad2antlr |
|
| 45 |
|
his7 |
|
| 46 |
39 42 44 45
|
syl3anc |
|
| 47 |
38 46
|
eqtr4d |
|
| 48 |
15 19 47
|
3eqtr3d |
|
| 49 |
48
|
ralrimiva |
|
| 50 |
1 2 3 4 5
|
cnlnadjlem4 |
|
| 51 |
17 50
|
syl |
|
| 52 |
|
hvaddcl |
|
| 53 |
41 43 52
|
syl2an |
|
| 54 |
|
hial2eq2 |
|
| 55 |
51 53 54
|
syl2anc |
|
| 56 |
49 55
|
mpbid |
|
| 57 |
56
|
ralrimiva |
|
| 58 |
57
|
rgen2 |
|
| 59 |
|
ellnop |
|
| 60 |
7 58 59
|
mpbir2an |
|