Step |
Hyp |
Ref |
Expression |
1 |
|
cnlnadjlem.1 |
|
2 |
|
cnlnadjlem.2 |
|
3 |
|
cnlnadjlem.3 |
|
4 |
|
cnlnadjlem.4 |
|
5 |
|
cnlnadjlem.5 |
|
6 |
1 2 3 4
|
cnlnadjlem3 |
|
7 |
5 6
|
fmpti |
|
8 |
1
|
lnopfi |
|
9 |
8
|
ffvelrni |
|
10 |
9
|
adantl |
|
11 |
|
hvmulcl |
|
12 |
11
|
ad2antrr |
|
13 |
|
simplr |
|
14 |
|
his7 |
|
15 |
10 12 13 14
|
syl3anc |
|
16 |
|
hvaddcl |
|
17 |
11 16
|
sylan |
|
18 |
1 2 3 4 5
|
cnlnadjlem5 |
|
19 |
17 18
|
sylan |
|
20 |
|
simpll |
|
21 |
9
|
adantl |
|
22 |
|
simplr |
|
23 |
|
his5 |
|
24 |
20 21 22 23
|
syl3anc |
|
25 |
|
simpr |
|
26 |
1 2 3 4 5
|
cnlnadjlem4 |
|
27 |
26
|
ad2antlr |
|
28 |
|
his5 |
|
29 |
20 25 27 28
|
syl3anc |
|
30 |
1 2 3 4 5
|
cnlnadjlem5 |
|
31 |
30
|
adantll |
|
32 |
31
|
oveq2d |
|
33 |
29 32
|
eqtr4d |
|
34 |
24 33
|
eqtr4d |
|
35 |
34
|
adantlr |
|
36 |
1 2 3 4 5
|
cnlnadjlem5 |
|
37 |
36
|
adantll |
|
38 |
35 37
|
oveq12d |
|
39 |
|
simpr |
|
40 |
|
hvmulcl |
|
41 |
26 40
|
sylan2 |
|
42 |
41
|
ad2antrr |
|
43 |
1 2 3 4 5
|
cnlnadjlem4 |
|
44 |
43
|
ad2antlr |
|
45 |
|
his7 |
|
46 |
39 42 44 45
|
syl3anc |
|
47 |
38 46
|
eqtr4d |
|
48 |
15 19 47
|
3eqtr3d |
|
49 |
48
|
ralrimiva |
|
50 |
1 2 3 4 5
|
cnlnadjlem4 |
|
51 |
17 50
|
syl |
|
52 |
|
hvaddcl |
|
53 |
41 43 52
|
syl2an |
|
54 |
|
hial2eq2 |
|
55 |
51 53 54
|
syl2anc |
|
56 |
49 55
|
mpbid |
|
57 |
56
|
ralrimiva |
|
58 |
57
|
rgen2 |
|
59 |
|
ellnop |
|
60 |
7 58 59
|
mpbir2an |
|