Metamath Proof Explorer


Theorem cnlnadjlem7

Description: Lemma for cnlnadji . Helper lemma to show that F is continuous. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses cnlnadjlem.1 T LinOp
cnlnadjlem.2 T ContOp
cnlnadjlem.3 G = g T g ih y
cnlnadjlem.4 B = ι w | v T v ih y = v ih w
cnlnadjlem.5 F = y B
Assertion cnlnadjlem7 A norm F A norm op T norm A

Proof

Step Hyp Ref Expression
1 cnlnadjlem.1 T LinOp
2 cnlnadjlem.2 T ContOp
3 cnlnadjlem.3 G = g T g ih y
4 cnlnadjlem.4 B = ι w | v T v ih y = v ih w
5 cnlnadjlem.5 F = y B
6 breq1 norm F A = 0 norm F A norm op T norm A 0 norm op T norm A
7 1 2 3 4 5 cnlnadjlem4 A F A
8 1 lnopfi T :
9 8 ffvelrni F A T F A
10 7 9 syl A T F A
11 hicl T F A A T F A ih A
12 10 11 mpancom A T F A ih A
13 12 abscld A T F A ih A
14 normcl T F A norm T F A
15 10 14 syl A norm T F A
16 normcl A norm A
17 15 16 remulcld A norm T F A norm A
18 1 2 nmcopexi norm op T
19 normcl F A norm F A
20 7 19 syl A norm F A
21 remulcl norm op T norm F A norm op T norm F A
22 18 20 21 sylancr A norm op T norm F A
23 22 16 remulcld A norm op T norm F A norm A
24 bcs T F A A T F A ih A norm T F A norm A
25 10 24 mpancom A T F A ih A norm T F A norm A
26 normge0 A 0 norm A
27 1 2 nmcoplbi F A norm T F A norm op T norm F A
28 7 27 syl A norm T F A norm op T norm F A
29 15 22 16 26 28 lemul1ad A norm T F A norm A norm op T norm F A norm A
30 13 17 23 25 29 letrd A T F A ih A norm op T norm F A norm A
31 1 2 3 4 5 cnlnadjlem5 A F A T F A ih A = F A ih F A
32 7 31 mpdan A T F A ih A = F A ih F A
33 32 fveq2d A T F A ih A = F A ih F A
34 hiidrcl F A F A ih F A
35 7 34 syl A F A ih F A
36 hiidge0 F A 0 F A ih F A
37 7 36 syl A 0 F A ih F A
38 35 37 absidd A F A ih F A = F A ih F A
39 normsq F A norm F A 2 = F A ih F A
40 7 39 syl A norm F A 2 = F A ih F A
41 20 recnd A norm F A
42 41 sqvald A norm F A 2 = norm F A norm F A
43 40 42 eqtr3d A F A ih F A = norm F A norm F A
44 33 38 43 3eqtrd A T F A ih A = norm F A norm F A
45 16 recnd A norm A
46 18 recni norm op T
47 mul32 norm op T norm F A norm A norm op T norm F A norm A = norm op T norm A norm F A
48 46 47 mp3an1 norm F A norm A norm op T norm F A norm A = norm op T norm A norm F A
49 41 45 48 syl2anc A norm op T norm F A norm A = norm op T norm A norm F A
50 30 44 49 3brtr3d A norm F A norm F A norm op T norm A norm F A
51 50 adantr A norm F A 0 norm F A norm F A norm op T norm A norm F A
52 20 adantr A norm F A 0 norm F A
53 remulcl norm op T norm A norm op T norm A
54 18 16 53 sylancr A norm op T norm A
55 54 adantr A norm F A 0 norm op T norm A
56 normge0 F A 0 norm F A
57 0re 0
58 leltne 0 norm F A 0 norm F A 0 < norm F A norm F A 0
59 57 58 mp3an1 norm F A 0 norm F A 0 < norm F A norm F A 0
60 19 56 59 syl2anc F A 0 < norm F A norm F A 0
61 60 biimpar F A norm F A 0 0 < norm F A
62 7 61 sylan A norm F A 0 0 < norm F A
63 lemul1 norm F A norm op T norm A norm F A 0 < norm F A norm F A norm op T norm A norm F A norm F A norm op T norm A norm F A
64 52 55 52 62 63 syl112anc A norm F A 0 norm F A norm op T norm A norm F A norm F A norm op T norm A norm F A
65 51 64 mpbird A norm F A 0 norm F A norm op T norm A
66 nmopge0 T : 0 norm op T
67 8 66 ax-mp 0 norm op T
68 mulge0 norm op T 0 norm op T norm A 0 norm A 0 norm op T norm A
69 18 67 68 mpanl12 norm A 0 norm A 0 norm op T norm A
70 16 26 69 syl2anc A 0 norm op T norm A
71 6 65 70 pm2.61ne A norm F A norm op T norm A