Step |
Hyp |
Ref |
Expression |
1 |
|
cnlnadjlem.1 |
|
2 |
|
cnlnadjlem.2 |
|
3 |
|
cnlnadjlem.3 |
|
4 |
|
cnlnadjlem.4 |
|
5 |
|
cnlnadjlem.5 |
|
6 |
|
breq1 |
|
7 |
1 2 3 4 5
|
cnlnadjlem4 |
|
8 |
1
|
lnopfi |
|
9 |
8
|
ffvelrni |
|
10 |
7 9
|
syl |
|
11 |
|
hicl |
|
12 |
10 11
|
mpancom |
|
13 |
12
|
abscld |
|
14 |
|
normcl |
|
15 |
10 14
|
syl |
|
16 |
|
normcl |
|
17 |
15 16
|
remulcld |
|
18 |
1 2
|
nmcopexi |
|
19 |
|
normcl |
|
20 |
7 19
|
syl |
|
21 |
|
remulcl |
|
22 |
18 20 21
|
sylancr |
|
23 |
22 16
|
remulcld |
|
24 |
|
bcs |
|
25 |
10 24
|
mpancom |
|
26 |
|
normge0 |
|
27 |
1 2
|
nmcoplbi |
|
28 |
7 27
|
syl |
|
29 |
15 22 16 26 28
|
lemul1ad |
|
30 |
13 17 23 25 29
|
letrd |
|
31 |
1 2 3 4 5
|
cnlnadjlem5 |
|
32 |
7 31
|
mpdan |
|
33 |
32
|
fveq2d |
|
34 |
|
hiidrcl |
|
35 |
7 34
|
syl |
|
36 |
|
hiidge0 |
|
37 |
7 36
|
syl |
|
38 |
35 37
|
absidd |
|
39 |
|
normsq |
|
40 |
7 39
|
syl |
|
41 |
20
|
recnd |
|
42 |
41
|
sqvald |
|
43 |
40 42
|
eqtr3d |
|
44 |
33 38 43
|
3eqtrd |
|
45 |
16
|
recnd |
|
46 |
18
|
recni |
|
47 |
|
mul32 |
|
48 |
46 47
|
mp3an1 |
|
49 |
41 45 48
|
syl2anc |
|
50 |
30 44 49
|
3brtr3d |
|
51 |
50
|
adantr |
|
52 |
20
|
adantr |
|
53 |
|
remulcl |
|
54 |
18 16 53
|
sylancr |
|
55 |
54
|
adantr |
|
56 |
|
normge0 |
|
57 |
|
0re |
|
58 |
|
leltne |
|
59 |
57 58
|
mp3an1 |
|
60 |
19 56 59
|
syl2anc |
|
61 |
60
|
biimpar |
|
62 |
7 61
|
sylan |
|
63 |
|
lemul1 |
|
64 |
52 55 52 62 63
|
syl112anc |
|
65 |
51 64
|
mpbird |
|
66 |
|
nmopge0 |
|
67 |
8 66
|
ax-mp |
|
68 |
|
mulge0 |
|
69 |
18 67 68
|
mpanl12 |
|
70 |
16 26 69
|
syl2anc |
|
71 |
6 65 70
|
pm2.61ne |
|