Metamath Proof Explorer


Theorem cnlnadjlem8

Description: Lemma for cnlnadji . F is continuous. (Contributed by NM, 17-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses cnlnadjlem.1 T LinOp
cnlnadjlem.2 T ContOp
cnlnadjlem.3 G = g T g ih y
cnlnadjlem.4 B = ι w | v T v ih y = v ih w
cnlnadjlem.5 F = y B
Assertion cnlnadjlem8 F ContOp

Proof

Step Hyp Ref Expression
1 cnlnadjlem.1 T LinOp
2 cnlnadjlem.2 T ContOp
3 cnlnadjlem.3 G = g T g ih y
4 cnlnadjlem.4 B = ι w | v T v ih y = v ih w
5 cnlnadjlem.5 F = y B
6 1 2 nmcopexi norm op T
7 1 2 3 4 5 cnlnadjlem7 z norm F z norm op T norm z
8 7 rgen z norm F z norm op T norm z
9 oveq1 x = norm op T x norm z = norm op T norm z
10 9 breq2d x = norm op T norm F z x norm z norm F z norm op T norm z
11 10 ralbidv x = norm op T z norm F z x norm z z norm F z norm op T norm z
12 11 rspcev norm op T z norm F z norm op T norm z x z norm F z x norm z
13 6 8 12 mp2an x z norm F z x norm z
14 1 2 3 4 5 cnlnadjlem6 F LinOp
15 14 lnopconi F ContOp x z norm F z x norm z
16 13 15 mpbir F ContOp