Metamath Proof Explorer


Theorem cnlnadjlem9

Description: Lemma for cnlnadji . F provides an example showing the existence of a continuous linear adjoint. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses cnlnadjlem.1 TLinOp
cnlnadjlem.2 TContOp
cnlnadjlem.3 G=gTgihy
cnlnadjlem.4 B=ιw|vTvihy=vihw
cnlnadjlem.5 F=yB
Assertion cnlnadjlem9 tLinOpContOpxzTxihz=xihtz

Proof

Step Hyp Ref Expression
1 cnlnadjlem.1 TLinOp
2 cnlnadjlem.2 TContOp
3 cnlnadjlem.3 G=gTgihy
4 cnlnadjlem.4 B=ιw|vTvihy=vihw
5 cnlnadjlem.5 F=yB
6 1 2 3 4 5 cnlnadjlem6 FLinOp
7 1 2 3 4 5 cnlnadjlem8 FContOp
8 elin FLinOpContOpFLinOpFContOp
9 6 7 8 mpbir2an FLinOpContOp
10 1 2 3 4 5 cnlnadjlem5 zxTxihz=xihFz
11 10 ancoms xzTxihz=xihFz
12 11 rgen2 xzTxihz=xihFz
13 fveq1 t=Ftz=Fz
14 13 oveq2d t=Fxihtz=xihFz
15 14 eqeq2d t=FTxihz=xihtzTxihz=xihFz
16 15 2ralbidv t=FxzTxihz=xihtzxzTxihz=xihFz
17 16 rspcev FLinOpContOpxzTxihz=xihFztLinOpContOpxzTxihz=xihtz
18 9 12 17 mp2an tLinOpContOpxzTxihz=xihtz