Metamath Proof Explorer


Theorem cnlnadjlem9

Description: Lemma for cnlnadji . F provides an example showing the existence of a continuous linear adjoint. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses cnlnadjlem.1 T LinOp
cnlnadjlem.2 T ContOp
cnlnadjlem.3 G = g T g ih y
cnlnadjlem.4 B = ι w | v T v ih y = v ih w
cnlnadjlem.5 F = y B
Assertion cnlnadjlem9 t LinOp ContOp x z T x ih z = x ih t z

Proof

Step Hyp Ref Expression
1 cnlnadjlem.1 T LinOp
2 cnlnadjlem.2 T ContOp
3 cnlnadjlem.3 G = g T g ih y
4 cnlnadjlem.4 B = ι w | v T v ih y = v ih w
5 cnlnadjlem.5 F = y B
6 1 2 3 4 5 cnlnadjlem6 F LinOp
7 1 2 3 4 5 cnlnadjlem8 F ContOp
8 elin F LinOp ContOp F LinOp F ContOp
9 6 7 8 mpbir2an F LinOp ContOp
10 1 2 3 4 5 cnlnadjlem5 z x T x ih z = x ih F z
11 10 ancoms x z T x ih z = x ih F z
12 11 rgen2 x z T x ih z = x ih F z
13 fveq1 t = F t z = F z
14 13 oveq2d t = F x ih t z = x ih F z
15 14 eqeq2d t = F T x ih z = x ih t z T x ih z = x ih F z
16 15 2ralbidv t = F x z T x ih z = x ih t z x z T x ih z = x ih F z
17 16 rspcev F LinOp ContOp x z T x ih z = x ih F z t LinOp ContOp x z T x ih z = x ih t z
18 9 12 17 mp2an t LinOp ContOp x z T x ih z = x ih t z