Metamath Proof Explorer


Theorem cnlnssadj

Description: Every continuous linear Hilbert space operator has an adjoint. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion cnlnssadj LinOp ContOp dom adj h

Proof

Step Hyp Ref Expression
1 cnlnadj y LinOp ContOp t LinOp ContOp x z y x ih z = x ih t z
2 df-rex t LinOp ContOp x z y x ih z = x ih t z t t LinOp ContOp x z y x ih z = x ih t z
3 1 2 sylib y LinOp ContOp t t LinOp ContOp x z y x ih z = x ih t z
4 inss1 LinOp ContOp LinOp
5 4 sseli y LinOp ContOp y LinOp
6 lnopf y LinOp y :
7 5 6 syl y LinOp ContOp y :
8 7 a1d y LinOp ContOp t LinOp ContOp x z y x ih z = x ih t z y :
9 4 sseli t LinOp ContOp t LinOp
10 lnopf t LinOp t :
11 9 10 syl t LinOp ContOp t :
12 11 a1i y LinOp ContOp t LinOp ContOp t :
13 12 adantrd y LinOp ContOp t LinOp ContOp x z y x ih z = x ih t z t :
14 eqcom y x ih z = x ih t z x ih t z = y x ih z
15 14 biimpi y x ih z = x ih t z x ih t z = y x ih z
16 15 2ralimi x z y x ih z = x ih t z x z x ih t z = y x ih z
17 adjsym t : y : x z x ih t z = y x ih z x z x ih y z = t x ih z
18 11 7 17 syl2anr y LinOp ContOp t LinOp ContOp x z x ih t z = y x ih z x z x ih y z = t x ih z
19 16 18 syl5ib y LinOp ContOp t LinOp ContOp x z y x ih z = x ih t z x z x ih y z = t x ih z
20 19 expimpd y LinOp ContOp t LinOp ContOp x z y x ih z = x ih t z x z x ih y z = t x ih z
21 8 13 20 3jcad y LinOp ContOp t LinOp ContOp x z y x ih z = x ih t z y : t : x z x ih y z = t x ih z
22 dfadj2 adj h = u v | u : v : x z x ih u z = v x ih z
23 22 eleq2i y t adj h y t u v | u : v : x z x ih u z = v x ih z
24 vex y V
25 vex t V
26 feq1 u = y u : y :
27 fveq1 u = y u z = y z
28 27 oveq2d u = y x ih u z = x ih y z
29 28 eqeq1d u = y x ih u z = v x ih z x ih y z = v x ih z
30 29 2ralbidv u = y x z x ih u z = v x ih z x z x ih y z = v x ih z
31 26 30 3anbi13d u = y u : v : x z x ih u z = v x ih z y : v : x z x ih y z = v x ih z
32 feq1 v = t v : t :
33 fveq1 v = t v x = t x
34 33 oveq1d v = t v x ih z = t x ih z
35 34 eqeq2d v = t x ih y z = v x ih z x ih y z = t x ih z
36 35 2ralbidv v = t x z x ih y z = v x ih z x z x ih y z = t x ih z
37 32 36 3anbi23d v = t y : v : x z x ih y z = v x ih z y : t : x z x ih y z = t x ih z
38 24 25 31 37 opelopab y t u v | u : v : x z x ih u z = v x ih z y : t : x z x ih y z = t x ih z
39 23 38 bitr2i y : t : x z x ih y z = t x ih z y t adj h
40 21 39 syl6ib y LinOp ContOp t LinOp ContOp x z y x ih z = x ih t z y t adj h
41 40 eximdv y LinOp ContOp t t LinOp ContOp x z y x ih z = x ih t z t y t adj h
42 3 41 mpd y LinOp ContOp t y t adj h
43 24 eldm2 y dom adj h t y t adj h
44 42 43 sylibr y LinOp ContOp y dom adj h
45 44 ssriv LinOp ContOp dom adj h