| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncff |
|
| 2 |
|
mblss |
|
| 3 |
|
cnex |
|
| 4 |
|
reex |
|
| 5 |
|
elpm2r |
|
| 6 |
3 4 5
|
mpanl12 |
|
| 7 |
1 2 6
|
syl2anr |
|
| 8 |
|
simpll |
|
| 9 |
|
simplr |
|
| 10 |
|
recncf |
|
| 11 |
10
|
a1i |
|
| 12 |
9 11
|
cncfco |
|
| 13 |
2
|
ad2antrr |
|
| 14 |
|
ax-resscn |
|
| 15 |
13 14
|
sstrdi |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
|
tgioo4 |
|
| 19 |
16 17 18
|
cncfcn |
|
| 20 |
15 14 19
|
sylancl |
|
| 21 |
|
eqid |
|
| 22 |
16 21
|
rerest |
|
| 23 |
13 22
|
syl |
|
| 24 |
23
|
oveq1d |
|
| 25 |
20 24
|
eqtrd |
|
| 26 |
12 25
|
eleqtrd |
|
| 27 |
|
retopbas |
|
| 28 |
|
bastg |
|
| 29 |
27 28
|
ax-mp |
|
| 30 |
|
simpr |
|
| 31 |
29 30
|
sselid |
|
| 32 |
|
cnima |
|
| 33 |
26 31 32
|
syl2anc |
|
| 34 |
|
eqid |
|
| 35 |
34
|
subopnmbl |
|
| 36 |
8 33 35
|
syl2anc |
|
| 37 |
|
imcncf |
|
| 38 |
37
|
a1i |
|
| 39 |
9 38
|
cncfco |
|
| 40 |
39 25
|
eleqtrd |
|
| 41 |
|
cnima |
|
| 42 |
40 31 41
|
syl2anc |
|
| 43 |
34
|
subopnmbl |
|
| 44 |
8 42 43
|
syl2anc |
|
| 45 |
36 44
|
jca |
|
| 46 |
45
|
ralrimiva |
|
| 47 |
|
ismbf1 |
|
| 48 |
7 46 47
|
sylanbrc |
|