Metamath Proof Explorer


Theorem cnmbf

Description: A continuous function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014) (Revised by Mario Carneiro, 26-Mar-2015)

Ref Expression
Assertion cnmbf A dom vol F : A cn F MblFn

Proof

Step Hyp Ref Expression
1 cncff F : A cn F : A
2 mblss A dom vol A
3 cnex V
4 reex V
5 elpm2r V V F : A A F 𝑝𝑚
6 3 4 5 mpanl12 F : A A F 𝑝𝑚
7 1 2 6 syl2anr A dom vol F : A cn F 𝑝𝑚
8 simpll A dom vol F : A cn x ran . A dom vol
9 simplr A dom vol F : A cn x ran . F : A cn
10 recncf : cn
11 10 a1i A dom vol F : A cn x ran . : cn
12 9 11 cncfco A dom vol F : A cn x ran . F : A cn
13 2 ad2antrr A dom vol F : A cn x ran . A
14 ax-resscn
15 13 14 sstrdi A dom vol F : A cn x ran . A
16 eqid TopOpen fld = TopOpen fld
17 eqid TopOpen fld 𝑡 A = TopOpen fld 𝑡 A
18 16 tgioo2 topGen ran . = TopOpen fld 𝑡
19 16 17 18 cncfcn A A cn = TopOpen fld 𝑡 A Cn topGen ran .
20 15 14 19 sylancl A dom vol F : A cn x ran . A cn = TopOpen fld 𝑡 A Cn topGen ran .
21 eqid topGen ran . = topGen ran .
22 16 21 rerest A TopOpen fld 𝑡 A = topGen ran . 𝑡 A
23 13 22 syl A dom vol F : A cn x ran . TopOpen fld 𝑡 A = topGen ran . 𝑡 A
24 23 oveq1d A dom vol F : A cn x ran . TopOpen fld 𝑡 A Cn topGen ran . = topGen ran . 𝑡 A Cn topGen ran .
25 20 24 eqtrd A dom vol F : A cn x ran . A cn = topGen ran . 𝑡 A Cn topGen ran .
26 12 25 eleqtrd A dom vol F : A cn x ran . F topGen ran . 𝑡 A Cn topGen ran .
27 retopbas ran . TopBases
28 bastg ran . TopBases ran . topGen ran .
29 27 28 ax-mp ran . topGen ran .
30 simpr A dom vol F : A cn x ran . x ran .
31 29 30 sselid A dom vol F : A cn x ran . x topGen ran .
32 cnima F topGen ran . 𝑡 A Cn topGen ran . x topGen ran . F -1 x topGen ran . 𝑡 A
33 26 31 32 syl2anc A dom vol F : A cn x ran . F -1 x topGen ran . 𝑡 A
34 eqid topGen ran . 𝑡 A = topGen ran . 𝑡 A
35 34 subopnmbl A dom vol F -1 x topGen ran . 𝑡 A F -1 x dom vol
36 8 33 35 syl2anc A dom vol F : A cn x ran . F -1 x dom vol
37 imcncf : cn
38 37 a1i A dom vol F : A cn x ran . : cn
39 9 38 cncfco A dom vol F : A cn x ran . F : A cn
40 39 25 eleqtrd A dom vol F : A cn x ran . F topGen ran . 𝑡 A Cn topGen ran .
41 cnima F topGen ran . 𝑡 A Cn topGen ran . x topGen ran . F -1 x topGen ran . 𝑡 A
42 40 31 41 syl2anc A dom vol F : A cn x ran . F -1 x topGen ran . 𝑡 A
43 34 subopnmbl A dom vol F -1 x topGen ran . 𝑡 A F -1 x dom vol
44 8 42 43 syl2anc A dom vol F : A cn x ran . F -1 x dom vol
45 36 44 jca A dom vol F : A cn x ran . F -1 x dom vol F -1 x dom vol
46 45 ralrimiva A dom vol F : A cn x ran . F -1 x dom vol F -1 x dom vol
47 ismbf1 F MblFn F 𝑝𝑚 x ran . F -1 x dom vol F -1 x dom vol
48 7 46 47 sylanbrc A dom vol F : A cn F MblFn