Step |
Hyp |
Ref |
Expression |
1 |
|
cncff |
|
2 |
|
mblss |
|
3 |
|
cnex |
|
4 |
|
reex |
|
5 |
|
elpm2r |
|
6 |
3 4 5
|
mpanl12 |
|
7 |
1 2 6
|
syl2anr |
|
8 |
|
simpll |
|
9 |
|
simplr |
|
10 |
|
recncf |
|
11 |
10
|
a1i |
|
12 |
9 11
|
cncfco |
|
13 |
2
|
ad2antrr |
|
14 |
|
ax-resscn |
|
15 |
13 14
|
sstrdi |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
16
|
tgioo2 |
|
19 |
16 17 18
|
cncfcn |
|
20 |
15 14 19
|
sylancl |
|
21 |
|
eqid |
|
22 |
16 21
|
rerest |
|
23 |
13 22
|
syl |
|
24 |
23
|
oveq1d |
|
25 |
20 24
|
eqtrd |
|
26 |
12 25
|
eleqtrd |
|
27 |
|
retopbas |
|
28 |
|
bastg |
|
29 |
27 28
|
ax-mp |
|
30 |
|
simpr |
|
31 |
29 30
|
sselid |
|
32 |
|
cnima |
|
33 |
26 31 32
|
syl2anc |
|
34 |
|
eqid |
|
35 |
34
|
subopnmbl |
|
36 |
8 33 35
|
syl2anc |
|
37 |
|
imcncf |
|
38 |
37
|
a1i |
|
39 |
9 38
|
cncfco |
|
40 |
39 25
|
eleqtrd |
|
41 |
|
cnima |
|
42 |
40 31 41
|
syl2anc |
|
43 |
34
|
subopnmbl |
|
44 |
8 42 43
|
syl2anc |
|
45 |
36 44
|
jca |
|
46 |
45
|
ralrimiva |
|
47 |
|
ismbf1 |
|
48 |
7 46 47
|
sylanbrc |
|