Metamath Proof Explorer


Theorem cnmetdval

Description: Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypothesis cnmetdval.1 D = abs
Assertion cnmetdval A B A D B = A B

Proof

Step Hyp Ref Expression
1 cnmetdval.1 D = abs
2 subf : ×
3 opelxpi A B A B ×
4 fvco3 : × A B × abs A B = A B
5 2 3 4 sylancr A B abs A B = A B
6 df-ov A D B = D A B
7 1 fveq1i D A B = abs A B
8 6 7 eqtri A D B = abs A B
9 df-ov A B = A B
10 9 fveq2i A B = A B
11 5 8 10 3eqtr4g A B A D B = A B