Metamath Proof Explorer


Theorem cnmgpid

Description: The group identity element of nonzero complex number multiplication is one. (Contributed by Steve Rodriguez, 23-Feb-2007) (Revised by AV, 26-Aug-2021)

Ref Expression
Hypothesis cnmgpabl.m M = mulGrp fld 𝑠 0
Assertion cnmgpid 0 M = 1

Proof

Step Hyp Ref Expression
1 cnmgpabl.m M = mulGrp fld 𝑠 0
2 cnring fld Ring
3 difss 0
4 ax-1cn 1
5 ax-1ne0 1 0
6 eldifsn 1 0 1 1 0
7 4 5 6 mpbir2an 1 0
8 cnfldbas = Base fld
9 cnfld1 1 = 1 fld
10 1 8 9 ringidss fld Ring 0 1 0 1 = 0 M
11 10 eqcomd fld Ring 0 1 0 0 M = 1
12 2 3 7 11 mp3an 0 M = 1