Step |
Hyp |
Ref |
Expression |
1 |
|
cnmpopc.r |
|
2 |
|
cnmpopc.m |
|
3 |
|
cnmpopc.n |
|
4 |
|
cnmpopc.o |
|
5 |
|
cnmpopc.a |
|
6 |
|
cnmpopc.c |
|
7 |
|
cnmpopc.b |
|
8 |
|
cnmpopc.j |
|
9 |
|
cnmpopc.q |
|
10 |
|
cnmpopc.d |
|
11 |
|
cnmpopc.e |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
iccssre |
|
15 |
5 6 14
|
syl2anc |
|
16 |
15 7
|
sseldd |
|
17 |
|
icccld |
|
18 |
5 16 17
|
syl2anc |
|
19 |
1
|
fveq2i |
|
20 |
18 19
|
eleqtrrdi |
|
21 |
|
ssun1 |
|
22 |
|
iccsplit |
|
23 |
5 6 7 22
|
syl3anc |
|
24 |
21 23
|
sseqtrrid |
|
25 |
|
uniretop |
|
26 |
1
|
unieqi |
|
27 |
25 26
|
eqtr4i |
|
28 |
27
|
restcldi |
|
29 |
15 20 24 28
|
syl3anc |
|
30 |
4
|
fveq2i |
|
31 |
29 30
|
eleqtrrdi |
|
32 |
|
toponuni |
|
33 |
8 32
|
syl |
|
34 |
|
topontop |
|
35 |
|
eqid |
|
36 |
35
|
topcld |
|
37 |
8 34 36
|
3syl |
|
38 |
33 37
|
eqeltrd |
|
39 |
|
txcld |
|
40 |
31 38 39
|
syl2anc |
|
41 |
|
icccld |
|
42 |
16 6 41
|
syl2anc |
|
43 |
42 19
|
eleqtrrdi |
|
44 |
|
ssun2 |
|
45 |
44 23
|
sseqtrrid |
|
46 |
27
|
restcldi |
|
47 |
15 43 45 46
|
syl3anc |
|
48 |
47 30
|
eleqtrrdi |
|
49 |
|
txcld |
|
50 |
48 38 49
|
syl2anc |
|
51 |
23
|
xpeq1d |
|
52 |
|
xpundir |
|
53 |
51 52
|
eqtrdi |
|
54 |
|
retopon |
|
55 |
1 54
|
eqeltri |
|
56 |
|
resttopon |
|
57 |
55 15 56
|
sylancr |
|
58 |
4 57
|
eqeltrid |
|
59 |
|
txtopon |
|
60 |
58 8 59
|
syl2anc |
|
61 |
|
toponuni |
|
62 |
60 61
|
syl |
|
63 |
53 62
|
eqtr3d |
|
64 |
24 15
|
sstrd |
|
65 |
|
resttopon |
|
66 |
55 64 65
|
sylancr |
|
67 |
2 66
|
eqeltrid |
|
68 |
|
txtopon |
|
69 |
67 8 68
|
syl2anc |
|
70 |
|
cntop2 |
|
71 |
10 70
|
syl |
|
72 |
|
toptopon2 |
|
73 |
71 72
|
sylib |
|
74 |
|
elicc2 |
|
75 |
5 16 74
|
syl2anc |
|
76 |
75
|
biimpa |
|
77 |
76
|
simp3d |
|
78 |
77
|
3adant3 |
|
79 |
78
|
iftrued |
|
80 |
79
|
mpoeq3dva |
|
81 |
80 10
|
eqeltrd |
|
82 |
|
cnf2 |
|
83 |
69 73 81 82
|
syl3anc |
|
84 |
|
eqid |
|
85 |
84
|
fmpo |
|
86 |
83 85
|
sylibr |
|
87 |
45 15
|
sstrd |
|
88 |
|
resttopon |
|
89 |
55 87 88
|
sylancr |
|
90 |
3 89
|
eqeltrid |
|
91 |
|
txtopon |
|
92 |
90 8 91
|
syl2anc |
|
93 |
|
elicc2 |
|
94 |
16 6 93
|
syl2anc |
|
95 |
94
|
biimpa |
|
96 |
95
|
simp2d |
|
97 |
96
|
biantrud |
|
98 |
95
|
simp1d |
|
99 |
16
|
adantr |
|
100 |
98 99
|
letri3d |
|
101 |
97 100
|
bitr4d |
|
102 |
101
|
3adant3 |
|
103 |
9
|
ancom2s |
|
104 |
103
|
ifeq1d |
|
105 |
|
ifid |
|
106 |
104 105
|
eqtrdi |
|
107 |
106
|
expr |
|
108 |
107
|
3adant2 |
|
109 |
102 108
|
sylbid |
|
110 |
|
iffalse |
|
111 |
109 110
|
pm2.61d1 |
|
112 |
111
|
mpoeq3dva |
|
113 |
112 11
|
eqeltrd |
|
114 |
|
cnf2 |
|
115 |
92 73 113 114
|
syl3anc |
|
116 |
|
eqid |
|
117 |
116
|
fmpo |
|
118 |
115 117
|
sylibr |
|
119 |
|
ralun |
|
120 |
86 118 119
|
syl2anc |
|
121 |
23
|
raleqdv |
|
122 |
120 121
|
mpbird |
|
123 |
|
eqid |
|
124 |
123
|
fmpo |
|
125 |
122 124
|
sylib |
|
126 |
62
|
feq2d |
|
127 |
125 126
|
mpbid |
|
128 |
|
ssid |
|
129 |
|
resmpo |
|
130 |
24 128 129
|
sylancl |
|
131 |
|
retop |
|
132 |
1 131
|
eqeltri |
|
133 |
|
ovex |
|
134 |
|
resttop |
|
135 |
132 133 134
|
mp2an |
|
136 |
4 135
|
eqeltri |
|
137 |
136
|
a1i |
|
138 |
|
ovexd |
|
139 |
|
txrest |
|
140 |
137 8 138 38 139
|
syl22anc |
|
141 |
132
|
a1i |
|
142 |
|
ovexd |
|
143 |
|
restabs |
|
144 |
141 24 142 143
|
syl3anc |
|
145 |
4
|
oveq1i |
|
146 |
144 145 2
|
3eqtr4g |
|
147 |
33
|
oveq2d |
|
148 |
35
|
restid |
|
149 |
8 148
|
syl |
|
150 |
147 149
|
eqtrd |
|
151 |
146 150
|
oveq12d |
|
152 |
140 151
|
eqtrd |
|
153 |
152
|
oveq1d |
|
154 |
81 130 153
|
3eltr4d |
|
155 |
|
resmpo |
|
156 |
45 128 155
|
sylancl |
|
157 |
|
ovexd |
|
158 |
|
txrest |
|
159 |
137 8 157 38 158
|
syl22anc |
|
160 |
|
restabs |
|
161 |
141 45 142 160
|
syl3anc |
|
162 |
4
|
oveq1i |
|
163 |
161 162 3
|
3eqtr4g |
|
164 |
163 150
|
oveq12d |
|
165 |
159 164
|
eqtrd |
|
166 |
165
|
oveq1d |
|
167 |
113 156 166
|
3eltr4d |
|
168 |
12 13 40 50 63 127 154 167
|
paste |
|