Metamath Proof Explorer


Theorem cnmpt11

Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmptid.j φJTopOnX
cnmpt11.a φxXAJCnK
cnmpt11.k φKTopOnY
cnmpt11.b φyYBKCnL
cnmpt11.c y=AB=C
Assertion cnmpt11 φxXCJCnL

Proof

Step Hyp Ref Expression
1 cnmptid.j φJTopOnX
2 cnmpt11.a φxXAJCnK
3 cnmpt11.k φKTopOnY
4 cnmpt11.b φyYBKCnL
5 cnmpt11.c y=AB=C
6 simpr φxXxX
7 cnf2 JTopOnXKTopOnYxXAJCnKxXA:XY
8 1 3 2 7 syl3anc φxXA:XY
9 8 fvmptelcdm φxXAY
10 eqid xXA=xXA
11 10 fvmpt2 xXAYxXAx=A
12 6 9 11 syl2anc φxXxXAx=A
13 12 fveq2d φxXyYBxXAx=yYBA
14 eqid yYB=yYB
15 5 eleq1d y=ABLCL
16 cntop2 yYBKCnLLTop
17 4 16 syl φLTop
18 toptopon2 LTopLTopOnL
19 17 18 sylib φLTopOnL
20 cnf2 KTopOnYLTopOnLyYBKCnLyYB:YL
21 3 19 4 20 syl3anc φyYB:YL
22 14 fmpt yYBLyYB:YL
23 21 22 sylibr φyYBL
24 23 adantr φxXyYBL
25 15 24 9 rspcdva φxXCL
26 14 5 9 25 fvmptd3 φxXyYBA=C
27 13 26 eqtrd φxXyYBxXAx=C
28 fvco3 xXA:XYxXyYBxXAx=yYBxXAx
29 8 28 sylan φxXyYBxXAx=yYBxXAx
30 eqid xXC=xXC
31 30 fvmpt2 xXCLxXCx=C
32 6 25 31 syl2anc φxXxXCx=C
33 27 29 32 3eqtr4d φxXyYBxXAx=xXCx
34 33 ralrimiva φxXyYBxXAx=xXCx
35 nfv zyYBxXAx=xXCx
36 nfcv _xyYB
37 nfmpt1 _xxXA
38 36 37 nfco _xyYBxXA
39 nfcv _xz
40 38 39 nffv _xyYBxXAz
41 nfmpt1 _xxXC
42 41 39 nffv _xxXCz
43 40 42 nfeq xyYBxXAz=xXCz
44 fveq2 x=zyYBxXAx=yYBxXAz
45 fveq2 x=zxXCx=xXCz
46 44 45 eqeq12d x=zyYBxXAx=xXCxyYBxXAz=xXCz
47 35 43 46 cbvralw xXyYBxXAx=xXCxzXyYBxXAz=xXCz
48 34 47 sylib φzXyYBxXAz=xXCz
49 fco yYB:YLxXA:XYyYBxXA:XL
50 21 8 49 syl2anc φyYBxXA:XL
51 50 ffnd φyYBxXAFnX
52 25 fmpttd φxXC:XL
53 52 ffnd φxXCFnX
54 eqfnfv yYBxXAFnXxXCFnXyYBxXA=xXCzXyYBxXAz=xXCz
55 51 53 54 syl2anc φyYBxXA=xXCzXyYBxXAz=xXCz
56 48 55 mpbird φyYBxXA=xXC
57 cnco xXAJCnKyYBKCnLyYBxXAJCnL
58 2 4 57 syl2anc φyYBxXAJCnL
59 56 58 eqeltrrd φxXCJCnL