Step |
Hyp |
Ref |
Expression |
1 |
|
cnmptid.j |
|
2 |
|
cnmpt11.a |
|
3 |
|
cnmpt11.k |
|
4 |
|
cnmpt11.b |
|
5 |
|
cnmpt11.c |
|
6 |
|
simpr |
|
7 |
|
cnf2 |
|
8 |
1 3 2 7
|
syl3anc |
|
9 |
8
|
fvmptelrn |
|
10 |
|
eqid |
|
11 |
10
|
fvmpt2 |
|
12 |
6 9 11
|
syl2anc |
|
13 |
12
|
fveq2d |
|
14 |
|
eqid |
|
15 |
5
|
eleq1d |
|
16 |
|
cntop2 |
|
17 |
4 16
|
syl |
|
18 |
|
toptopon2 |
|
19 |
17 18
|
sylib |
|
20 |
|
cnf2 |
|
21 |
3 19 4 20
|
syl3anc |
|
22 |
14
|
fmpt |
|
23 |
21 22
|
sylibr |
|
24 |
23
|
adantr |
|
25 |
15 24 9
|
rspcdva |
|
26 |
14 5 9 25
|
fvmptd3 |
|
27 |
13 26
|
eqtrd |
|
28 |
|
fvco3 |
|
29 |
8 28
|
sylan |
|
30 |
|
eqid |
|
31 |
30
|
fvmpt2 |
|
32 |
6 25 31
|
syl2anc |
|
33 |
27 29 32
|
3eqtr4d |
|
34 |
33
|
ralrimiva |
|
35 |
|
nfv |
|
36 |
|
nfcv |
|
37 |
|
nfmpt1 |
|
38 |
36 37
|
nfco |
|
39 |
|
nfcv |
|
40 |
38 39
|
nffv |
|
41 |
|
nfmpt1 |
|
42 |
41 39
|
nffv |
|
43 |
40 42
|
nfeq |
|
44 |
|
fveq2 |
|
45 |
|
fveq2 |
|
46 |
44 45
|
eqeq12d |
|
47 |
35 43 46
|
cbvralw |
|
48 |
34 47
|
sylib |
|
49 |
|
fco |
|
50 |
21 8 49
|
syl2anc |
|
51 |
50
|
ffnd |
|
52 |
25
|
fmpttd |
|
53 |
52
|
ffnd |
|
54 |
|
eqfnfv |
|
55 |
51 53 54
|
syl2anc |
|
56 |
48 55
|
mpbird |
|
57 |
|
cnco |
|
58 |
2 4 57
|
syl2anc |
|
59 |
56 58
|
eqeltrrd |
|