| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmptid.j |
|
| 2 |
|
cnmpt11.a |
|
| 3 |
|
cnmpt11.k |
|
| 4 |
|
cnmpt11.b |
|
| 5 |
|
cnmpt11.c |
|
| 6 |
|
simpr |
|
| 7 |
|
cnf2 |
|
| 8 |
1 3 2 7
|
syl3anc |
|
| 9 |
8
|
fvmptelcdm |
|
| 10 |
|
eqid |
|
| 11 |
10
|
fvmpt2 |
|
| 12 |
6 9 11
|
syl2anc |
|
| 13 |
12
|
fveq2d |
|
| 14 |
|
eqid |
|
| 15 |
5
|
eleq1d |
|
| 16 |
|
cntop2 |
|
| 17 |
4 16
|
syl |
|
| 18 |
|
toptopon2 |
|
| 19 |
17 18
|
sylib |
|
| 20 |
|
cnf2 |
|
| 21 |
3 19 4 20
|
syl3anc |
|
| 22 |
14
|
fmpt |
|
| 23 |
21 22
|
sylibr |
|
| 24 |
23
|
adantr |
|
| 25 |
15 24 9
|
rspcdva |
|
| 26 |
14 5 9 25
|
fvmptd3 |
|
| 27 |
13 26
|
eqtrd |
|
| 28 |
|
fvco3 |
|
| 29 |
8 28
|
sylan |
|
| 30 |
|
eqid |
|
| 31 |
30
|
fvmpt2 |
|
| 32 |
6 25 31
|
syl2anc |
|
| 33 |
27 29 32
|
3eqtr4d |
|
| 34 |
33
|
ralrimiva |
|
| 35 |
|
nfv |
|
| 36 |
|
nfcv |
|
| 37 |
|
nfmpt1 |
|
| 38 |
36 37
|
nfco |
|
| 39 |
|
nfcv |
|
| 40 |
38 39
|
nffv |
|
| 41 |
|
nfmpt1 |
|
| 42 |
41 39
|
nffv |
|
| 43 |
40 42
|
nfeq |
|
| 44 |
|
fveq2 |
|
| 45 |
|
fveq2 |
|
| 46 |
44 45
|
eqeq12d |
|
| 47 |
35 43 46
|
cbvralw |
|
| 48 |
34 47
|
sylib |
|
| 49 |
|
fco |
|
| 50 |
21 8 49
|
syl2anc |
|
| 51 |
50
|
ffnd |
|
| 52 |
25
|
fmpttd |
|
| 53 |
52
|
ffnd |
|
| 54 |
|
eqfnfv |
|
| 55 |
51 53 54
|
syl2anc |
|
| 56 |
48 55
|
mpbird |
|
| 57 |
|
cnco |
|
| 58 |
2 4 57
|
syl2anc |
|
| 59 |
56 58
|
eqeltrrd |
|