Metamath Proof Explorer


Theorem cnmpt11f

Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmptid.j φ J TopOn X
cnmpt11.a φ x X A J Cn K
cnmpt11f.f φ F K Cn L
Assertion cnmpt11f φ x X F A J Cn L

Proof

Step Hyp Ref Expression
1 cnmptid.j φ J TopOn X
2 cnmpt11.a φ x X A J Cn K
3 cnmpt11f.f φ F K Cn L
4 cntop2 x X A J Cn K K Top
5 2 4 syl φ K Top
6 toptopon2 K Top K TopOn K
7 5 6 sylib φ K TopOn K
8 eqid K = K
9 eqid L = L
10 8 9 cnf F K Cn L F : K L
11 3 10 syl φ F : K L
12 11 feqmptd φ F = y K F y
13 12 3 eqeltrrd φ y K F y K Cn L
14 fveq2 y = A F y = F A
15 1 2 7 13 14 cnmpt11 φ x X F A J Cn L