Metamath Proof Explorer


Theorem cnmpt12f

Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmptid.j φ J TopOn X
cnmpt11.a φ x X A J Cn K
cnmpt1t.b φ x X B J Cn L
cnmpt12f.f φ F K × t L Cn M
Assertion cnmpt12f φ x X A F B J Cn M

Proof

Step Hyp Ref Expression
1 cnmptid.j φ J TopOn X
2 cnmpt11.a φ x X A J Cn K
3 cnmpt1t.b φ x X B J Cn L
4 cnmpt12f.f φ F K × t L Cn M
5 df-ov A F B = F A B
6 5 mpteq2i x X A F B = x X F A B
7 1 2 3 cnmpt1t φ x X A B J Cn K × t L
8 1 7 4 cnmpt11f φ x X F A B J Cn M
9 6 8 eqeltrid φ x X A F B J Cn M