Metamath Proof Explorer


Theorem cnmpt1ip

Description: Continuity of inner product; analogue of cnmpt12f which cannot be used directly because .i is not a function. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cnmpt1ip.j J = TopOpen W
cnmpt1ip.c C = TopOpen fld
cnmpt1ip.h , ˙ = 𝑖 W
cnmpt1ip.r φ W CPreHil
cnmpt1ip.k φ K TopOn X
cnmpt1ip.a φ x X A K Cn J
cnmpt1ip.b φ x X B K Cn J
Assertion cnmpt1ip φ x X A , ˙ B K Cn C

Proof

Step Hyp Ref Expression
1 cnmpt1ip.j J = TopOpen W
2 cnmpt1ip.c C = TopOpen fld
3 cnmpt1ip.h , ˙ = 𝑖 W
4 cnmpt1ip.r φ W CPreHil
5 cnmpt1ip.k φ K TopOn X
6 cnmpt1ip.a φ x X A K Cn J
7 cnmpt1ip.b φ x X B K Cn J
8 cphngp W CPreHil W NrmGrp
9 ngptps W NrmGrp W TopSp
10 4 8 9 3syl φ W TopSp
11 eqid Base W = Base W
12 11 1 istps W TopSp J TopOn Base W
13 10 12 sylib φ J TopOn Base W
14 cnf2 K TopOn X J TopOn Base W x X A K Cn J x X A : X Base W
15 5 13 6 14 syl3anc φ x X A : X Base W
16 15 fvmptelrn φ x X A Base W
17 cnf2 K TopOn X J TopOn Base W x X B K Cn J x X B : X Base W
18 5 13 7 17 syl3anc φ x X B : X Base W
19 18 fvmptelrn φ x X B Base W
20 eqid if W = if W
21 11 3 20 ipfval A Base W B Base W A if W B = A , ˙ B
22 16 19 21 syl2anc φ x X A if W B = A , ˙ B
23 22 mpteq2dva φ x X A if W B = x X A , ˙ B
24 20 1 2 ipcn W CPreHil if W J × t J Cn C
25 4 24 syl φ if W J × t J Cn C
26 5 6 7 25 cnmpt12f φ x X A if W B K Cn C
27 23 26 eqeltrrd φ x X A , ˙ B K Cn C