Metamath Proof Explorer


Theorem cnmpt1mulr

Description: Continuity of ring multiplication; analogue of cnmpt12f which cannot be used directly because .r is not a function. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses mulrcn.j J = TopOpen R
cnmpt1mulr.t · ˙ = R
cnmpt1mulr.r φ R TopRing
cnmpt1mulr.k φ K TopOn X
cnmpt1mulr.a φ x X A K Cn J
cnmpt1mulr.b φ x X B K Cn J
Assertion cnmpt1mulr φ x X A · ˙ B K Cn J

Proof

Step Hyp Ref Expression
1 mulrcn.j J = TopOpen R
2 cnmpt1mulr.t · ˙ = R
3 cnmpt1mulr.r φ R TopRing
4 cnmpt1mulr.k φ K TopOn X
5 cnmpt1mulr.a φ x X A K Cn J
6 cnmpt1mulr.b φ x X B K Cn J
7 eqid mulGrp R = mulGrp R
8 7 1 mgptopn J = TopOpen mulGrp R
9 7 2 mgpplusg · ˙ = + mulGrp R
10 7 trgtmd R TopRing mulGrp R TopMnd
11 3 10 syl φ mulGrp R TopMnd
12 8 9 11 4 5 6 cnmpt1plusg φ x X A · ˙ B K Cn J