Metamath Proof Explorer


Theorem cnmpt1t

Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmptid.j φ J TopOn X
cnmpt11.a φ x X A J Cn K
cnmpt1t.b φ x X B J Cn L
Assertion cnmpt1t φ x X A B J Cn K × t L

Proof

Step Hyp Ref Expression
1 cnmptid.j φ J TopOn X
2 cnmpt11.a φ x X A J Cn K
3 cnmpt1t.b φ x X B J Cn L
4 toponuni J TopOn X X = J
5 mpteq1 X = J x X x X A x x X B x = x J x X A x x X B x
6 1 4 5 3syl φ x X x X A x x X B x = x J x X A x x X B x
7 simpr φ x X x X
8 cntop2 x X A J Cn K K Top
9 2 8 syl φ K Top
10 toptopon2 K Top K TopOn K
11 9 10 sylib φ K TopOn K
12 cnf2 J TopOn X K TopOn K x X A J Cn K x X A : X K
13 1 11 2 12 syl3anc φ x X A : X K
14 13 fvmptelrn φ x X A K
15 eqid x X A = x X A
16 15 fvmpt2 x X A K x X A x = A
17 7 14 16 syl2anc φ x X x X A x = A
18 cntop2 x X B J Cn L L Top
19 3 18 syl φ L Top
20 toptopon2 L Top L TopOn L
21 19 20 sylib φ L TopOn L
22 cnf2 J TopOn X L TopOn L x X B J Cn L x X B : X L
23 1 21 3 22 syl3anc φ x X B : X L
24 23 fvmptelrn φ x X B L
25 eqid x X B = x X B
26 25 fvmpt2 x X B L x X B x = B
27 7 24 26 syl2anc φ x X x X B x = B
28 17 27 opeq12d φ x X x X A x x X B x = A B
29 28 mpteq2dva φ x X x X A x x X B x = x X A B
30 6 29 eqtr3d φ x J x X A x x X B x = x X A B
31 eqid J = J
32 nfcv _ y x X A x x X B x
33 nffvmpt1 _ x x X A y
34 nffvmpt1 _ x x X B y
35 33 34 nfop _ x x X A y x X B y
36 fveq2 x = y x X A x = x X A y
37 fveq2 x = y x X B x = x X B y
38 36 37 opeq12d x = y x X A x x X B x = x X A y x X B y
39 32 35 38 cbvmpt x J x X A x x X B x = y J x X A y x X B y
40 31 39 txcnmpt x X A J Cn K x X B J Cn L x J x X A x x X B x J Cn K × t L
41 2 3 40 syl2anc φ x J x X A x x X B x J Cn K × t L
42 30 41 eqeltrrd φ x X A B J Cn K × t L