Metamath Proof Explorer


Theorem cnmpt1vsca

Description: Continuity of scalar multiplication; analogue of cnmpt12f which cannot be used directly because .s is not a function. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses tlmtrg.f F = Scalar W
cnmpt1vsca.t · ˙ = W
cnmpt1vsca.j J = TopOpen W
cnmpt1vsca.k K = TopOpen F
cnmpt1vsca.w φ W TopMod
cnmpt1vsca.l φ L TopOn X
cnmpt1vsca.a φ x X A L Cn K
cnmpt1vsca.b φ x X B L Cn J
Assertion cnmpt1vsca φ x X A · ˙ B L Cn J

Proof

Step Hyp Ref Expression
1 tlmtrg.f F = Scalar W
2 cnmpt1vsca.t · ˙ = W
3 cnmpt1vsca.j J = TopOpen W
4 cnmpt1vsca.k K = TopOpen F
5 cnmpt1vsca.w φ W TopMod
6 cnmpt1vsca.l φ L TopOn X
7 cnmpt1vsca.a φ x X A L Cn K
8 cnmpt1vsca.b φ x X B L Cn J
9 1 tlmscatps W TopMod F TopSp
10 5 9 syl φ F TopSp
11 eqid Base F = Base F
12 11 4 istps F TopSp K TopOn Base F
13 10 12 sylib φ K TopOn Base F
14 cnf2 L TopOn X K TopOn Base F x X A L Cn K x X A : X Base F
15 6 13 7 14 syl3anc φ x X A : X Base F
16 15 fvmptelrn φ x X A Base F
17 tlmtps W TopMod W TopSp
18 5 17 syl φ W TopSp
19 eqid Base W = Base W
20 19 3 istps W TopSp J TopOn Base W
21 18 20 sylib φ J TopOn Base W
22 cnf2 L TopOn X J TopOn Base W x X B L Cn J x X B : X Base W
23 6 21 8 22 syl3anc φ x X B : X Base W
24 23 fvmptelrn φ x X B Base W
25 eqid 𝑠𝑓 W = 𝑠𝑓 W
26 19 1 11 25 2 scafval A Base F B Base W A 𝑠𝑓 W B = A · ˙ B
27 16 24 26 syl2anc φ x X A 𝑠𝑓 W B = A · ˙ B
28 27 mpteq2dva φ x X A 𝑠𝑓 W B = x X A · ˙ B
29 25 3 1 4 vscacn W TopMod 𝑠𝑓 W K × t J Cn J
30 5 29 syl φ 𝑠𝑓 W K × t J Cn J
31 6 7 8 30 cnmpt12f φ x X A 𝑠𝑓 W B L Cn J
32 28 31 eqeltrrd φ x X A · ˙ B L Cn J