Metamath Proof Explorer


Theorem cnmpt21f

Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmpt21.j φ J TopOn X
cnmpt21.k φ K TopOn Y
cnmpt21.a φ x X , y Y A J × t K Cn L
cnmpt21f.f φ F L Cn M
Assertion cnmpt21f φ x X , y Y F A J × t K Cn M

Proof

Step Hyp Ref Expression
1 cnmpt21.j φ J TopOn X
2 cnmpt21.k φ K TopOn Y
3 cnmpt21.a φ x X , y Y A J × t K Cn L
4 cnmpt21f.f φ F L Cn M
5 cntop1 F L Cn M L Top
6 4 5 syl φ L Top
7 toptopon2 L Top L TopOn L
8 6 7 sylib φ L TopOn L
9 eqid L = L
10 eqid M = M
11 9 10 cnf F L Cn M F : L M
12 4 11 syl φ F : L M
13 12 feqmptd φ F = z L F z
14 13 4 eqeltrrd φ z L F z L Cn M
15 fveq2 z = A F z = F A
16 1 2 3 8 14 15 cnmpt21 φ x X , y Y F A J × t K Cn M