| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmpt21.j |
|
| 2 |
|
cnmpt21.k |
|
| 3 |
|
cnmpt21.a |
|
| 4 |
|
cnmpt2t.b |
|
| 5 |
|
fveq2 |
|
| 6 |
|
df-ov |
|
| 7 |
5 6
|
eqtr4di |
|
| 8 |
|
fveq2 |
|
| 9 |
|
df-ov |
|
| 10 |
8 9
|
eqtr4di |
|
| 11 |
7 10
|
opeq12d |
|
| 12 |
11
|
mpompt |
|
| 13 |
|
nfcv |
|
| 14 |
|
nfmpo1 |
|
| 15 |
|
nfcv |
|
| 16 |
13 14 15
|
nfov |
|
| 17 |
|
nfmpo1 |
|
| 18 |
13 17 15
|
nfov |
|
| 19 |
16 18
|
nfop |
|
| 20 |
|
nfcv |
|
| 21 |
|
nfmpo2 |
|
| 22 |
|
nfcv |
|
| 23 |
20 21 22
|
nfov |
|
| 24 |
|
nfmpo2 |
|
| 25 |
20 24 22
|
nfov |
|
| 26 |
23 25
|
nfop |
|
| 27 |
|
nfcv |
|
| 28 |
|
nfcv |
|
| 29 |
|
oveq12 |
|
| 30 |
|
oveq12 |
|
| 31 |
29 30
|
opeq12d |
|
| 32 |
19 26 27 28 31
|
cbvmpo |
|
| 33 |
12 32
|
eqtri |
|
| 34 |
|
txtopon |
|
| 35 |
1 2 34
|
syl2anc |
|
| 36 |
|
toponuni |
|
| 37 |
|
mpteq1 |
|
| 38 |
35 36 37
|
3syl |
|
| 39 |
|
simp2 |
|
| 40 |
|
simp3 |
|
| 41 |
|
cntop2 |
|
| 42 |
3 41
|
syl |
|
| 43 |
|
toptopon2 |
|
| 44 |
42 43
|
sylib |
|
| 45 |
|
cnf2 |
|
| 46 |
35 44 3 45
|
syl3anc |
|
| 47 |
|
eqid |
|
| 48 |
47
|
fmpo |
|
| 49 |
46 48
|
sylibr |
|
| 50 |
|
rsp2 |
|
| 51 |
49 50
|
syl |
|
| 52 |
51
|
3impib |
|
| 53 |
47
|
ovmpt4g |
|
| 54 |
39 40 52 53
|
syl3anc |
|
| 55 |
|
cntop2 |
|
| 56 |
4 55
|
syl |
|
| 57 |
|
toptopon2 |
|
| 58 |
56 57
|
sylib |
|
| 59 |
|
cnf2 |
|
| 60 |
35 58 4 59
|
syl3anc |
|
| 61 |
|
eqid |
|
| 62 |
61
|
fmpo |
|
| 63 |
60 62
|
sylibr |
|
| 64 |
|
rsp2 |
|
| 65 |
63 64
|
syl |
|
| 66 |
65
|
3impib |
|
| 67 |
61
|
ovmpt4g |
|
| 68 |
39 40 66 67
|
syl3anc |
|
| 69 |
54 68
|
opeq12d |
|
| 70 |
69
|
mpoeq3dva |
|
| 71 |
33 38 70
|
3eqtr3a |
|
| 72 |
|
eqid |
|
| 73 |
|
eqid |
|
| 74 |
72 73
|
txcnmpt |
|
| 75 |
3 4 74
|
syl2anc |
|
| 76 |
71 75
|
eqeltrrd |
|