Step |
Hyp |
Ref |
Expression |
1 |
|
cnmpt21.j |
|
2 |
|
cnmpt21.k |
|
3 |
|
cnmpt21.a |
|
4 |
|
cnmpt2t.b |
|
5 |
|
fveq2 |
|
6 |
|
df-ov |
|
7 |
5 6
|
eqtr4di |
|
8 |
|
fveq2 |
|
9 |
|
df-ov |
|
10 |
8 9
|
eqtr4di |
|
11 |
7 10
|
opeq12d |
|
12 |
11
|
mpompt |
|
13 |
|
nfcv |
|
14 |
|
nfmpo1 |
|
15 |
|
nfcv |
|
16 |
13 14 15
|
nfov |
|
17 |
|
nfmpo1 |
|
18 |
13 17 15
|
nfov |
|
19 |
16 18
|
nfop |
|
20 |
|
nfcv |
|
21 |
|
nfmpo2 |
|
22 |
|
nfcv |
|
23 |
20 21 22
|
nfov |
|
24 |
|
nfmpo2 |
|
25 |
20 24 22
|
nfov |
|
26 |
23 25
|
nfop |
|
27 |
|
nfcv |
|
28 |
|
nfcv |
|
29 |
|
oveq12 |
|
30 |
|
oveq12 |
|
31 |
29 30
|
opeq12d |
|
32 |
19 26 27 28 31
|
cbvmpo |
|
33 |
12 32
|
eqtri |
|
34 |
|
txtopon |
|
35 |
1 2 34
|
syl2anc |
|
36 |
|
toponuni |
|
37 |
|
mpteq1 |
|
38 |
35 36 37
|
3syl |
|
39 |
|
simp2 |
|
40 |
|
simp3 |
|
41 |
|
cntop2 |
|
42 |
3 41
|
syl |
|
43 |
|
toptopon2 |
|
44 |
42 43
|
sylib |
|
45 |
|
cnf2 |
|
46 |
35 44 3 45
|
syl3anc |
|
47 |
|
eqid |
|
48 |
47
|
fmpo |
|
49 |
46 48
|
sylibr |
|
50 |
|
rsp2 |
|
51 |
49 50
|
syl |
|
52 |
51
|
3impib |
|
53 |
47
|
ovmpt4g |
|
54 |
39 40 52 53
|
syl3anc |
|
55 |
|
cntop2 |
|
56 |
4 55
|
syl |
|
57 |
|
toptopon2 |
|
58 |
56 57
|
sylib |
|
59 |
|
cnf2 |
|
60 |
35 58 4 59
|
syl3anc |
|
61 |
|
eqid |
|
62 |
61
|
fmpo |
|
63 |
60 62
|
sylibr |
|
64 |
|
rsp2 |
|
65 |
63 64
|
syl |
|
66 |
65
|
3impib |
|
67 |
61
|
ovmpt4g |
|
68 |
39 40 66 67
|
syl3anc |
|
69 |
54 68
|
opeq12d |
|
70 |
69
|
mpoeq3dva |
|
71 |
33 38 70
|
3eqtr3a |
|
72 |
|
eqid |
|
73 |
|
eqid |
|
74 |
72 73
|
txcnmpt |
|
75 |
3 4 74
|
syl2anc |
|
76 |
71 75
|
eqeltrrd |
|