Metamath Proof Explorer


Theorem cnmptc

Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmptid.j φ J TopOn X
cnmptc.k φ K TopOn Y
cnmptc.p φ P Y
Assertion cnmptc φ x X P J Cn K

Proof

Step Hyp Ref Expression
1 cnmptid.j φ J TopOn X
2 cnmptc.k φ K TopOn Y
3 cnmptc.p φ P Y
4 fconstmpt X × P = x X P
5 cnconst2 J TopOn X K TopOn Y P Y X × P J Cn K
6 1 2 3 5 syl3anc φ X × P J Cn K
7 4 6 eqeltrrid φ x X P J Cn K