| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmptk1p.j |
|
| 2 |
|
cnmptk1p.k |
|
| 3 |
|
cnmptk1p.l |
|
| 4 |
|
cnmptk1p.n |
|
| 5 |
|
cnmptk1p.a |
|
| 6 |
|
cnmptk1p.b |
|
| 7 |
|
cnmptk1p.c |
|
| 8 |
|
eqid |
|
| 9 |
|
cnf2 |
|
| 10 |
1 2 6 9
|
syl3anc |
|
| 11 |
10
|
fvmptelcdm |
|
| 12 |
7
|
eleq1d |
|
| 13 |
2
|
adantr |
|
| 14 |
3
|
adantr |
|
| 15 |
|
nllytop |
|
| 16 |
4 15
|
syl |
|
| 17 |
|
topontop |
|
| 18 |
3 17
|
syl |
|
| 19 |
|
eqid |
|
| 20 |
19
|
xkotopon |
|
| 21 |
16 18 20
|
syl2anc |
|
| 22 |
|
cnf2 |
|
| 23 |
1 21 5 22
|
syl3anc |
|
| 24 |
23
|
fvmptelcdm |
|
| 25 |
|
cnf2 |
|
| 26 |
13 14 24 25
|
syl3anc |
|
| 27 |
8
|
fmpt |
|
| 28 |
26 27
|
sylibr |
|
| 29 |
12 28 11
|
rspcdva |
|
| 30 |
8 7 11 29
|
fvmptd3 |
|
| 31 |
30
|
mpteq2dva |
|
| 32 |
|
eqid |
|
| 33 |
|
toponuni |
|
| 34 |
2 33
|
syl |
|
| 35 |
|
mpoeq12 |
|
| 36 |
32 34 35
|
sylancr |
|
| 37 |
|
eqid |
|
| 38 |
|
eqid |
|
| 39 |
37 38
|
xkofvcn |
|
| 40 |
4 18 39
|
syl2anc |
|
| 41 |
36 40
|
eqeltrd |
|
| 42 |
|
fveq1 |
|
| 43 |
|
fveq2 |
|
| 44 |
42 43
|
sylan9eq |
|
| 45 |
1 5 6 21 2 41 44
|
cnmpt12 |
|
| 46 |
31 45
|
eqeltrrd |
|