Step |
Hyp |
Ref |
Expression |
1 |
|
cnmptk1p.j |
|
2 |
|
cnmptk1p.k |
|
3 |
|
cnmptk1p.l |
|
4 |
|
cnmptk1p.n |
|
5 |
|
cnmptk1p.a |
|
6 |
|
cnmptk1p.b |
|
7 |
|
cnmptk1p.c |
|
8 |
|
eqid |
|
9 |
|
cnf2 |
|
10 |
1 2 6 9
|
syl3anc |
|
11 |
10
|
fvmptelrn |
|
12 |
7
|
eleq1d |
|
13 |
2
|
adantr |
|
14 |
3
|
adantr |
|
15 |
|
nllytop |
|
16 |
4 15
|
syl |
|
17 |
|
topontop |
|
18 |
3 17
|
syl |
|
19 |
|
eqid |
|
20 |
19
|
xkotopon |
|
21 |
16 18 20
|
syl2anc |
|
22 |
|
cnf2 |
|
23 |
1 21 5 22
|
syl3anc |
|
24 |
23
|
fvmptelrn |
|
25 |
|
cnf2 |
|
26 |
13 14 24 25
|
syl3anc |
|
27 |
8
|
fmpt |
|
28 |
26 27
|
sylibr |
|
29 |
12 28 11
|
rspcdva |
|
30 |
8 7 11 29
|
fvmptd3 |
|
31 |
30
|
mpteq2dva |
|
32 |
|
eqid |
|
33 |
|
toponuni |
|
34 |
2 33
|
syl |
|
35 |
|
mpoeq12 |
|
36 |
32 34 35
|
sylancr |
|
37 |
|
eqid |
|
38 |
|
eqid |
|
39 |
37 38
|
xkofvcn |
|
40 |
4 18 39
|
syl2anc |
|
41 |
36 40
|
eqeltrd |
|
42 |
|
fveq1 |
|
43 |
|
fveq2 |
|
44 |
42 43
|
sylan9eq |
|
45 |
1 5 6 21 2 41 44
|
cnmpt12 |
|
46 |
31 45
|
eqeltrrd |
|