| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmptkk.j |
|
| 2 |
|
cnmptkk.k |
|
| 3 |
|
cnmptkk.l |
|
| 4 |
|
cnmptkk.m |
|
| 5 |
|
cnmptkk.n |
|
| 6 |
|
cnmptkk.a |
|
| 7 |
|
cnmptkk.b |
|
| 8 |
|
cnmptkk.c |
|
| 9 |
2
|
adantr |
|
| 10 |
3
|
adantr |
|
| 11 |
|
topontop |
|
| 12 |
2 11
|
syl |
|
| 13 |
|
nllytop |
|
| 14 |
5 13
|
syl |
|
| 15 |
|
eqid |
|
| 16 |
15
|
xkotopon |
|
| 17 |
12 14 16
|
syl2anc |
|
| 18 |
|
cnf2 |
|
| 19 |
1 17 6 18
|
syl3anc |
|
| 20 |
19
|
fvmptelcdm |
|
| 21 |
|
cnf2 |
|
| 22 |
9 10 20 21
|
syl3anc |
|
| 23 |
|
eqid |
|
| 24 |
23
|
fmpt |
|
| 25 |
22 24
|
sylibr |
|
| 26 |
|
eqidd |
|
| 27 |
|
eqidd |
|
| 28 |
25 26 27 8
|
fmptcof |
|
| 29 |
28
|
mpteq2dva |
|
| 30 |
|
topontop |
|
| 31 |
4 30
|
syl |
|
| 32 |
|
eqid |
|
| 33 |
32
|
xkotopon |
|
| 34 |
14 31 33
|
syl2anc |
|
| 35 |
|
eqid |
|
| 36 |
35
|
xkococn |
|
| 37 |
12 5 31 36
|
syl3anc |
|
| 38 |
|
coeq1 |
|
| 39 |
|
coeq2 |
|
| 40 |
38 39
|
sylan9eq |
|
| 41 |
1 7 6 34 17 37 40
|
cnmpt12 |
|
| 42 |
29 41
|
eqeltrrd |
|