Step |
Hyp |
Ref |
Expression |
1 |
|
cnmptkk.j |
|
2 |
|
cnmptkk.k |
|
3 |
|
cnmptkk.l |
|
4 |
|
cnmptkk.m |
|
5 |
|
cnmptkk.n |
|
6 |
|
cnmptkk.a |
|
7 |
|
cnmptkk.b |
|
8 |
|
cnmptkk.c |
|
9 |
2
|
adantr |
|
10 |
3
|
adantr |
|
11 |
|
topontop |
|
12 |
2 11
|
syl |
|
13 |
|
nllytop |
|
14 |
5 13
|
syl |
|
15 |
|
eqid |
|
16 |
15
|
xkotopon |
|
17 |
12 14 16
|
syl2anc |
|
18 |
|
cnf2 |
|
19 |
1 17 6 18
|
syl3anc |
|
20 |
19
|
fvmptelrn |
|
21 |
|
cnf2 |
|
22 |
9 10 20 21
|
syl3anc |
|
23 |
|
eqid |
|
24 |
23
|
fmpt |
|
25 |
22 24
|
sylibr |
|
26 |
|
eqidd |
|
27 |
|
eqidd |
|
28 |
25 26 27 8
|
fmptcof |
|
29 |
28
|
mpteq2dva |
|
30 |
|
topontop |
|
31 |
4 30
|
syl |
|
32 |
|
eqid |
|
33 |
32
|
xkotopon |
|
34 |
14 31 33
|
syl2anc |
|
35 |
|
eqid |
|
36 |
35
|
xkococn |
|
37 |
12 5 31 36
|
syl3anc |
|
38 |
|
coeq1 |
|
39 |
|
coeq2 |
|
40 |
38 39
|
sylan9eq |
|
41 |
1 7 6 34 17 37 40
|
cnmpt12 |
|
42 |
29 41
|
eqeltrrd |
|