Step |
Hyp |
Ref |
Expression |
1 |
|
cnmptk1.j |
|
2 |
|
cnmptk1.k |
|
3 |
|
cnmptk1.l |
|
4 |
|
cnmptkp.a |
|
5 |
|
cnmptkp.b |
|
6 |
|
cnmptkp.c |
|
7 |
|
eqid |
|
8 |
5
|
adantr |
|
9 |
6
|
eleq1d |
|
10 |
2
|
adantr |
|
11 |
|
topontop |
|
12 |
3 11
|
syl |
|
13 |
12
|
adantr |
|
14 |
|
toptopon2 |
|
15 |
13 14
|
sylib |
|
16 |
|
topontop |
|
17 |
2 16
|
syl |
|
18 |
|
eqid |
|
19 |
18
|
xkotopon |
|
20 |
17 12 19
|
syl2anc |
|
21 |
|
cnf2 |
|
22 |
1 20 4 21
|
syl3anc |
|
23 |
22
|
fvmptelrn |
|
24 |
|
cnf2 |
|
25 |
10 15 23 24
|
syl3anc |
|
26 |
7
|
fmpt |
|
27 |
25 26
|
sylibr |
|
28 |
9 27 8
|
rspcdva |
|
29 |
7 6 8 28
|
fvmptd3 |
|
30 |
29
|
mpteq2dva |
|
31 |
|
toponuni |
|
32 |
2 31
|
syl |
|
33 |
5 32
|
eleqtrd |
|
34 |
|
eqid |
|
35 |
34
|
xkopjcn |
|
36 |
17 12 33 35
|
syl3anc |
|
37 |
|
fveq1 |
|
38 |
1 4 20 36 37
|
cnmpt11 |
|
39 |
30 38
|
eqeltrrd |
|