Metamath Proof Explorer


Theorem cnmptlimc

Description: If F is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses cnmptlimc.f φ x A X : A cn D
cnmptlimc.b φ B A
cnmptlimc.1 x = B X = Y
Assertion cnmptlimc φ Y x A X lim B

Proof

Step Hyp Ref Expression
1 cnmptlimc.f φ x A X : A cn D
2 cnmptlimc.b φ B A
3 cnmptlimc.1 x = B X = Y
4 eqid x A X = x A X
5 3 eleq1d x = B X D Y D
6 cncff x A X : A cn D x A X : A D
7 1 6 syl φ x A X : A D
8 4 fmpt x A X D x A X : A D
9 7 8 sylibr φ x A X D
10 5 9 2 rspcdva φ Y D
11 4 3 2 10 fvmptd3 φ x A X B = Y
12 1 2 cnlimci φ x A X B x A X lim B
13 11 12 eqeltrrd φ Y x A X lim B