Metamath Proof Explorer


Theorem cnmsgnbas

Description: The base set of the sign subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypothesis cnmsgngrp.u U = mulGrp fld 𝑠 1 1
Assertion cnmsgnbas 1 1 = Base U

Proof

Step Hyp Ref Expression
1 cnmsgngrp.u U = mulGrp fld 𝑠 1 1
2 ax-1cn 1
3 neg1cn 1
4 prssi 1 1 1 1
5 2 3 4 mp2an 1 1
6 eqid mulGrp fld = mulGrp fld
7 cnfldbas = Base fld
8 6 7 mgpbas = Base mulGrp fld
9 1 8 ressbas2 1 1 1 1 = Base U
10 5 9 ax-mp 1 1 = Base U