Metamath Proof Explorer


Theorem cnmsgngrp

Description: The group of signs under multiplication. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypothesis cnmsgngrp.u U = mulGrp fld 𝑠 1 1
Assertion cnmsgngrp U Grp

Proof

Step Hyp Ref Expression
1 cnmsgngrp.u U = mulGrp fld 𝑠 1 1
2 eqid mulGrp fld 𝑠 0 = mulGrp fld 𝑠 0
3 2 cnmsgnsubg 1 1 SubGrp mulGrp fld 𝑠 0
4 cnex V
5 4 difexi 0 V
6 ax-1cn 1
7 ax-1ne0 1 0
8 eldifsn 1 0 1 1 0
9 6 7 8 mpbir2an 1 0
10 neg1cn 1
11 neg1ne0 1 0
12 eldifsn 1 0 1 1 0
13 10 11 12 mpbir2an 1 0
14 prssi 1 0 1 0 1 1 0
15 9 13 14 mp2an 1 1 0
16 ressabs 0 V 1 1 0 mulGrp fld 𝑠 0 𝑠 1 1 = mulGrp fld 𝑠 1 1
17 5 15 16 mp2an mulGrp fld 𝑠 0 𝑠 1 1 = mulGrp fld 𝑠 1 1
18 1 17 eqtr4i U = mulGrp fld 𝑠 0 𝑠 1 1
19 18 subggrp 1 1 SubGrp mulGrp fld 𝑠 0 U Grp
20 3 19 ax-mp U Grp