Step |
Hyp |
Ref |
Expression |
1 |
|
cnmsgnsubg.m |
|
2 |
|
elpri |
|
3 |
|
id |
|
4 |
|
ax-1cn |
|
5 |
3 4
|
eqeltrdi |
|
6 |
|
id |
|
7 |
|
neg1cn |
|
8 |
6 7
|
eqeltrdi |
|
9 |
5 8
|
jaoi |
|
10 |
2 9
|
syl |
|
11 |
|
ax-1ne0 |
|
12 |
11
|
a1i |
|
13 |
3 12
|
eqnetrd |
|
14 |
|
neg1ne0 |
|
15 |
14
|
a1i |
|
16 |
6 15
|
eqnetrd |
|
17 |
13 16
|
jaoi |
|
18 |
2 17
|
syl |
|
19 |
|
elpri |
|
20 |
|
oveq12 |
|
21 |
4
|
mulid1i |
|
22 |
|
1ex |
|
23 |
22
|
prid1 |
|
24 |
21 23
|
eqeltri |
|
25 |
20 24
|
eqeltrdi |
|
26 |
|
oveq12 |
|
27 |
7
|
mulid1i |
|
28 |
|
negex |
|
29 |
28
|
prid2 |
|
30 |
27 29
|
eqeltri |
|
31 |
26 30
|
eqeltrdi |
|
32 |
|
oveq12 |
|
33 |
7
|
mulid2i |
|
34 |
33 29
|
eqeltri |
|
35 |
32 34
|
eqeltrdi |
|
36 |
|
oveq12 |
|
37 |
|
neg1mulneg1e1 |
|
38 |
37 23
|
eqeltri |
|
39 |
36 38
|
eqeltrdi |
|
40 |
25 31 35 39
|
ccase |
|
41 |
2 19 40
|
syl2an |
|
42 |
|
oveq2 |
|
43 |
|
1div1e1 |
|
44 |
43 23
|
eqeltri |
|
45 |
42 44
|
eqeltrdi |
|
46 |
|
oveq2 |
|
47 |
|
divneg2 |
|
48 |
4 4 11 47
|
mp3an |
|
49 |
43
|
negeqi |
|
50 |
48 49
|
eqtr3i |
|
51 |
50 29
|
eqeltri |
|
52 |
46 51
|
eqeltrdi |
|
53 |
45 52
|
jaoi |
|
54 |
2 53
|
syl |
|
55 |
1 10 18 41 23 54
|
cnmsubglem |
|