Metamath Proof Explorer


Theorem cnmsgnsubg

Description: The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypothesis cnmsgnsubg.m M = mulGrp fld 𝑠 0
Assertion cnmsgnsubg 1 1 SubGrp M

Proof

Step Hyp Ref Expression
1 cnmsgnsubg.m M = mulGrp fld 𝑠 0
2 elpri x 1 1 x = 1 x = 1
3 id x = 1 x = 1
4 ax-1cn 1
5 3 4 eqeltrdi x = 1 x
6 id x = 1 x = 1
7 neg1cn 1
8 6 7 eqeltrdi x = 1 x
9 5 8 jaoi x = 1 x = 1 x
10 2 9 syl x 1 1 x
11 ax-1ne0 1 0
12 11 a1i x = 1 1 0
13 3 12 eqnetrd x = 1 x 0
14 neg1ne0 1 0
15 14 a1i x = 1 1 0
16 6 15 eqnetrd x = 1 x 0
17 13 16 jaoi x = 1 x = 1 x 0
18 2 17 syl x 1 1 x 0
19 elpri y 1 1 y = 1 y = 1
20 oveq12 x = 1 y = 1 x y = 1 1
21 4 mulid1i 1 1 = 1
22 1ex 1 V
23 22 prid1 1 1 1
24 21 23 eqeltri 1 1 1 1
25 20 24 eqeltrdi x = 1 y = 1 x y 1 1
26 oveq12 x = 1 y = 1 x y = -1 1
27 7 mulid1i -1 1 = 1
28 negex 1 V
29 28 prid2 1 1 1
30 27 29 eqeltri -1 1 1 1
31 26 30 eqeltrdi x = 1 y = 1 x y 1 1
32 oveq12 x = 1 y = 1 x y = 1 -1
33 7 mulid2i 1 -1 = 1
34 33 29 eqeltri 1 -1 1 1
35 32 34 eqeltrdi x = 1 y = 1 x y 1 1
36 oveq12 x = 1 y = 1 x y = -1 -1
37 neg1mulneg1e1 -1 -1 = 1
38 37 23 eqeltri -1 -1 1 1
39 36 38 eqeltrdi x = 1 y = 1 x y 1 1
40 25 31 35 39 ccase x = 1 x = 1 y = 1 y = 1 x y 1 1
41 2 19 40 syl2an x 1 1 y 1 1 x y 1 1
42 oveq2 x = 1 1 x = 1 1
43 1div1e1 1 1 = 1
44 43 23 eqeltri 1 1 1 1
45 42 44 eqeltrdi x = 1 1 x 1 1
46 oveq2 x = 1 1 x = 1 1
47 divneg2 1 1 1 0 1 1 = 1 1
48 4 4 11 47 mp3an 1 1 = 1 1
49 43 negeqi 1 1 = 1
50 48 49 eqtr3i 1 1 = 1
51 50 29 eqeltri 1 1 1 1
52 46 51 eqeltrdi x = 1 1 x 1 1
53 45 52 jaoi x = 1 x = 1 1 x 1 1
54 2 53 syl x 1 1 1 x 1 1
55 1 10 18 41 23 54 cnmsubglem 1 1 SubGrp M