| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmgpabl.m |
|
| 2 |
|
cnmsubglem.1 |
|
| 3 |
|
cnmsubglem.2 |
|
| 4 |
|
cnmsubglem.3 |
|
| 5 |
|
cnmsubglem.4 |
|
| 6 |
|
cnmsubglem.5 |
|
| 7 |
|
eldifsn |
|
| 8 |
2 3 7
|
sylanbrc |
|
| 9 |
8
|
ssriv |
|
| 10 |
5
|
ne0ii |
|
| 11 |
4
|
ralrimiva |
|
| 12 |
|
cnfldinv |
|
| 13 |
2 3 12
|
syl2anc |
|
| 14 |
13 6
|
eqeltrd |
|
| 15 |
11 14
|
jca |
|
| 16 |
15
|
rgen |
|
| 17 |
1
|
cnmgpabl |
|
| 18 |
|
ablgrp |
|
| 19 |
|
difss |
|
| 20 |
|
eqid |
|
| 21 |
|
cnfldbas |
|
| 22 |
20 21
|
mgpbas |
|
| 23 |
1 22
|
ressbas2 |
|
| 24 |
19 23
|
ax-mp |
|
| 25 |
|
cnex |
|
| 26 |
|
difexg |
|
| 27 |
|
cnfldmul |
|
| 28 |
20 27
|
mgpplusg |
|
| 29 |
1 28
|
ressplusg |
|
| 30 |
25 26 29
|
mp2b |
|
| 31 |
|
cnfld0 |
|
| 32 |
|
cndrng |
|
| 33 |
21 31 32
|
drngui |
|
| 34 |
|
eqid |
|
| 35 |
33 1 34
|
invrfval |
|
| 36 |
24 30 35
|
issubg2 |
|
| 37 |
17 18 36
|
mp2b |
|
| 38 |
9 10 16 37
|
mpbir3an |
|