Database
BASIC TOPOLOGY
Metric spaces
Topology on the reals
cnngp
Next ⟩
cnnrg
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnngp
Description:
The complex numbers form a normed group.
(Contributed by
Mario Carneiro
, 4-Oct-2015)
Ref
Expression
Assertion
cnngp
⊢
ℂ
fld
∈
NrmGrp
Proof
Step
Hyp
Ref
Expression
1
cnring
⊢
ℂ
fld
∈
Ring
2
ringgrp
⊢
ℂ
fld
∈
Ring
→
ℂ
fld
∈
Grp
3
1
2
ax-mp
⊢
ℂ
fld
∈
Grp
4
cnfldms
⊢
ℂ
fld
∈
MetSp
5
ssid
⊢
abs
∘
−
⊆
abs
∘
−
6
cnfldnm
⊢
abs
=
norm
⁡
ℂ
fld
7
cnfldsub
⊢
−
=
-
ℂ
fld
8
cnfldds
⊢
abs
∘
−
=
dist
⁡
ℂ
fld
9
6
7
8
isngp
⊢
ℂ
fld
∈
NrmGrp
↔
ℂ
fld
∈
Grp
∧
ℂ
fld
∈
MetSp
∧
abs
∘
−
⊆
abs
∘
−
10
3
4
5
9
mpbir3an
⊢
ℂ
fld
∈
NrmGrp