Metamath Proof Explorer


Theorem cnnrg

Description: The complex numbers form a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion cnnrg fld NrmRing

Proof

Step Hyp Ref Expression
1 cnngp fld NrmGrp
2 absabv abs AbsVal fld
3 cnfldnm abs = norm fld
4 eqid AbsVal fld = AbsVal fld
5 3 4 isnrg fld NrmRing fld NrmGrp abs AbsVal fld
6 1 2 5 mpbir2an fld NrmRing