Database
BASIC TOPOLOGY
Metric spaces
Topology on the reals
cnnrg
Next ⟩
cnfldtopn
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnnrg
Description:
The complex numbers form a normed ring.
(Contributed by
Mario Carneiro
, 4-Oct-2015)
Ref
Expression
Assertion
cnnrg
⊢
ℂ
fld
∈
NrmRing
Proof
Step
Hyp
Ref
Expression
1
cnngp
⊢
ℂ
fld
∈
NrmGrp
2
absabv
⊢
abs
∈
AbsVal
⁡
ℂ
fld
3
cnfldnm
⊢
abs
=
norm
⁡
ℂ
fld
4
eqid
⊢
AbsVal
⁡
ℂ
fld
=
AbsVal
⁡
ℂ
fld
5
3
4
isnrg
⊢
ℂ
fld
∈
NrmRing
↔
ℂ
fld
∈
NrmGrp
∧
abs
∈
AbsVal
⁡
ℂ
fld
6
1
2
5
mpbir2an
⊢
ℂ
fld
∈
NrmRing